cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A213125 Primes p such that 2p^2-1, 3p^2-2, 4p^2-3, 5p^2-4 and 6p^2-5 are also prime.

Original entry on oeis.org

981091, 2260889, 3553271, 3918251, 6038551, 9499279, 10310761, 12377429, 13670719, 13783139, 14881649, 15480529, 18114461, 18727199, 20418341, 21793829, 24170089, 25276649, 30814321, 36104069, 49319579, 52650599, 63485311, 73614031, 76141591, 77646199, 87177089
Offset: 1

Views

Author

Zak Seidov, Jun 05 2012

Keywords

Comments

Subsequence of A213107:
a(1)=981091=A213107(14)=A213079(148)=A213078(970)==A106483(10205)=A000040(77144).

Crossrefs

A213159 Primes p such that (k+1)*p^2-k are prime for k=1..6.

Original entry on oeis.org

3918251, 18727199, 395564539, 397687709, 503720279, 873201911, 1088927209, 1329433951, 2108335769, 2376506131, 3684190621, 3728773019, 3934099049, 3971294419, 4272771301, 5047170421, 5091014389, 5380213021, 6187560259, 6219076681, 7243803841, 8309591011, 8448425231
Offset: 1

Views

Author

Zak Seidov, Jun 06 2012

Keywords

Comments

Subsequence of A213125: a(1)=A213125(4), a(2)=A213125(14),
a(3)=A213125(60).

Crossrefs

A106482 Number of prime factors (with multiplicity) of A007588(n).

Original entry on oeis.org

0, 0, 2, 2, 3, 3, 3, 2, 4, 4, 3, 2, 5, 2, 4, 3, 6, 2, 4, 3, 5, 3, 3, 3, 5, 3, 4, 5, 4, 3, 5, 3, 7, 4, 3, 4, 5, 4, 3, 3, 6, 2, 4, 2, 6, 4, 3, 3, 7, 3, 4, 4, 4, 3, 8, 4, 5, 4, 5, 2, 6, 3, 3, 4, 7, 5, 5, 3, 5, 3, 5, 3, 7, 2, 4, 5, 4, 4, 6, 3, 6, 5, 5, 3, 6, 3, 4, 3, 6, 4, 6, 3, 4, 5, 4, 3, 8, 3, 4, 5, 6
Offset: 0

Views

Author

Jonathan Vos Post, May 03 2005

Keywords

Examples

			73*(2*73^2 - 1) = 777961 = 73 * 10657, which has two prime factors, so a(73) = 2.
100*(2*100^2 - 1) = 1999900 = 2^2 * 5^2 * 7 * 2857 has 6 prime factors.
		

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[bigomega](n*(2*n^2-1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 03 2023

Formula

a(n) = A001222(A007588(n)).

Extensions

a(78) corrected by Sean A. Irvine, Mar 03 2023

A106484 Iterated Stella Octangula numbers A007588.

Original entry on oeis.org

2, 14, 5474, 328053267374, 70609493887317824553444331216711874, 704075595895578790602913140874091028795793004193695613020210569466609876113017694526357948165550233559374
Offset: 0

Views

Author

Jonathan Vos Post, May 03 2005

Keywords

Crossrefs

Formula

a(0) = 2; a(n+1) = a(n)*(2*a(n)^2 - 1) = A007588(a(n)).

A213161 Primes p such that (k+1)*p^2-k are prime for k=1..7.

Original entry on oeis.org

1329433951, 25778112821, 75902670689, 80358496679, 84005465699, 184273377289, 188745495049, 220260667439, 225830918741, 227706130541, 250232659249, 314987199911, 396580371571, 532375084669, 535798256839, 542604984109, 634725913009, 676837365821, 706769028239
Offset: 1

Views

Author

Zak Seidov, Jun 06 2012

Keywords

Comments

All terms squared are congruent to 1 mod 9240.
More terms: 755943098371, 797370889699, 843028736089, 848657766529, 849148113659, 861950855039, 1035653917759.
Subsequence of A213159: a(1)=A213159(8)=A213125(134).

Crossrefs

A229627 a(n) is the smallest prime q such that 2*q^k - 1 is prime for k = 1, 2, ..., n.

Original entry on oeis.org

2, 2, 3, 92581, 385939, 464938699, 24137752519, 1095265755949
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 27 2013

Keywords

Comments

The prime number 2 in the definition is used because 2 is the only prime p such that p*q^k - 1 can be prime for more than one prime q.
a(9) > 3*10^13. - Tyler Busby, Jan 14 2023

Crossrefs

Programs

  • Mathematica
    a[1]=2;a[n_]:=a[n]=(For[m=PrimePi[a[n-1]],Union[Table[PrimeQ[2 Prime[m]^k-1],{k,n}]]!={True},m++];Prime[m])
  • PARI
    a(n)=forprime(m=2,,for(k=1,n,if(!ispseudoprime(2*m^k-1), next(2))); return(m)) \\ Charles R Greathouse IV, Oct 01 2013

Extensions

a(7) from Giovanni Resta, Oct 01 2013
a(8) from Tyler Busby, Jan 06 2023

A230362 Least prime p with 2*p^2 - 1 and 2*(n-p)^2 -1 both prime, or 0 if such a prime p does not exist.

Original entry on oeis.org

3, 13, 7, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 7, 2, 2, 3, 2, 2, 3, 7, 2, 3, 7, 11, 13, 7, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 7, 2, 2, 3, 2, 3, 7, 7, 2, 3, 11, 2, 3, 7, 2, 2, 2, 3, 43, 7, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 16 2013

Keywords

Comments

Conjecture: 0 < a(n) < sqrt(2n)*(log n) except for n = 1, 2, 3, 232, 1478, 6457.
By the conjecture in the comments in A230351, 0 < a(n) < n for all n > 3.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 22 2023

Examples

			a(12) = 2 since 2*2^2 - 1 and 2*(12-2)^2 - 1 = 199 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[PrimeQ[2Prime[i]^2-1]&&PrimeQ[2(n-Prime[i])^2-1],Print[n," ",Prime[i]];Goto[aa]],{i,1,Max[13,PrimePi[n-1]]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,70}]

A349327 Primes p such that 2*p^2 is a term of A179993.

Original entry on oeis.org

2, 3, 7, 13, 43, 127, 211, 293, 743, 757, 797, 811, 1429, 1597, 1721, 2087, 2113, 2239, 2269, 2297, 2381, 2423, 2647, 3079, 3121, 3221, 3863, 4229, 4271, 4957, 5209, 5333, 5923, 6299, 6691, 7127, 7237, 7349, 7757, 7853, 8329, 8513, 8539, 8807, 9127, 9311, 9631, 9661
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2021

Keywords

Comments

The numbers of the form 2*p^2 where p is a term of this sequence are the only nonsquarefree terms of A179993.
Equivalently, primes p such that p^2 - 2 and 2*p^2 - 1 are also primes, or primes p such that p^2 - 2 is a term of A023204.

Examples

			2 is a term since 2*2^2 = 8 = 1*8 = 2*4 is a term of A179993: 8 - 1 = 7 and 4 - 2 = 2 are both primes.
3 is a term since 2*3^2 = 18 = 1*18 = 2*9 = 3*6 is a term of A179993: 18 - 1 = 17, 9 - 2 = 7 and 6 - 3 = 3 are all primes.
		

Crossrefs

Intersection of A062326 and A106483.
The prime terms of A225098.

Programs

  • Mathematica
    q[n_] := AllTrue[{n, n^2 - 2, 2*n^2 - 1}, PrimeQ]; Select[Range[10000], q]
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A349327(): # generator of terms
        n = 2
        while True:
            if isprime(n**2-2) and isprime (2*n**2-1): yield n
            n = nextprime(n)
    A349327_list = list(islice(A349327(),20)) # Chai Wah Wu, Nov 15 2021

A152912 Primes p such that 2*p^2-1 is not prime.

Original entry on oeis.org

5, 19, 23, 29, 31, 37, 47, 53, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 131, 139, 149, 151, 163, 167, 173, 191, 193, 223, 227, 229, 233, 239, 241, 257, 269, 271, 281, 283, 307, 313, 317, 331, 337, 347, 349, 359, 373, 383, 389, 397, 401, 421, 431, 439, 443
Offset: 1

Views

Author

Vincenzo Librandi, Dec 15 2008

Keywords

Comments

Primes not in A106483. Primes p such that 2p^2-1 is not in A092057. - R. J. Mathar, Dec 19 2008

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500)|not IsPrime(2*p^2-1)]; // Vincenzo Librandi, Aug 30 2012
  • Maple
    a := proc (n) if isprime(n) = true and isprime(2*n^2-1) = false then n else end if end proc: seq(a(n), n = 1 .. 500); # Emeric Deutsch, Jan 02 2009
  • Mathematica
    Select[Prime[Range[100]], !PrimeQ[2 #^2 - 1] &] (* Vincenzo Librandi, Aug 30 2012 *)

Extensions

Definition clarified by R. J. Mathar, Dec 19 2008
Extended by Emeric Deutsch, Jan 02 2009

A213334 Primes p such that (k+1)*p^2 - k is prime for k=1..8.

Original entry on oeis.org

75902670689, 84005465699, 188745495049, 220260667439, 314987199911, 1970532645509, 2368000666921, 3702971171899, 3886185845431, 4117783215701, 4166366916251, 6213125459729, 7768065083591, 7946042954849, 8788172678669, 11387502711311, 14643617926211
Offset: 1

Views

Author

Zak Seidov, Jun 08 2012

Keywords

Comments

The square of each term is congruent to 1 (mod 9240).
Note that for each p, (k+1)*p^2 - k (k=1..8) gives 8 primes in arithmetic progression with difference d = p^2 - 1.

Crossrefs

Extensions

a(6)-a(17) from Tyler Busby, Jan 09 2023
Previous Showing 11-20 of 25 results. Next