cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A102567 Numbers k such that the concatenation of k with itself is a biperiod square.

Original entry on oeis.org

13223140496, 20661157025, 29752066116, 40495867769, 52892561984, 66942148761, 82644628100, 183673469387755102041, 326530612244897959184, 510204081632653061225, 734693877551020408164
Offset: 1

Views

Author

C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 15 2005

Keywords

Comments

Also, numbers N associated with A106497.
Also, numbers k such that k concatenated with k-1 gives the product of two numbers which differ by 2. E.g., 13223140496//13223140495 = 36363636363 * 36363636365, where // denotes concatenation. - Giovanni Resta and Franklin T. Adams-Watters, Nov 13 2006
From Jianing Song, Nov 01 2024: (Start)
Numbers 10^(k-1) <= a <= 10^k - 1 such that a*(10^k + 1) is a square. Note that 10^k + 1 must be nonsquarefree, i.e., k is in A086982, otherwise a must be divisible by 10^k + 1, which is impossible.
Let v(p,m) be the p-adic valuation of m.
- If p is not in A045616, then v(p,10^k+1) = r > 0 if and only if v(p,gcd(n,10^k+1)) = r-1.
- If p is in A045616, let e be the multiplicative order of 10 modulo p, then v(p,10^k+1) > 0 if and only if e is even and k is an odd multiple of e/2, in which case v(p,10^k+1) = v(p,10^e-1) + v(p,k) = v(p,10^e-1) + v(p,gcd(k,10^k+1)).
This helps to find the terms. (End)

Examples

			13223140496 concatenated with 13223140496 is 1322314049613223140496 = 36363636364^2.
40495867769 is in the sequence because writing it twice gives the square number 4049586776940495867769 = 63636363637^2.
		

References

  • Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
  • R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.

Crossrefs

Programs

  • Maple
    with(numtheory): Digits:=50:for d from 1 to 35 do tendp1:=10^d+1: tendp1fact:=ifactors(tendp1)[2]: n:=mul(piecewise(tendp1fact[i][2] mod 2=1,tendp1fact[i][1],1),i=1..nops(tendp1fact)):for i from ceil(sqrt((10^(d-1))/n)) to floor(sqrt((10^d-1)/n)) do printf("%d, ",n*i^2) od: od:
  • Mathematica
    A102567L[n_] := Catenate@Table[Module[{fac = FactorInteger[10^k + 1], min}, If[Max@fac[[All, -1]] == 1, {}, min = Times @@ Cases[fac, {a_, A102567L%5B30%5D%20(*%20_JungHwan%20Min">?OddQ} :> a]; Table[min s^2, {s, Ceiling@Sqrt[10^(k - 1)/min], Floor@Sqrt[(10^k - 1)/min]}]]], {k, n}]; A102567L[30] (* _JungHwan Min, Dec 11 2016 *)
    A102567Q = IntegerQ@Sqrt@FromDigits[Join[#, #] &@IntegerDigits[#]] & (* JungHwan Min, Dec 11 2016 *)
  • PARI
    p = [3, 487, 56598313]; \\ A045616
    b(n) = my(d = gcd(n, lift(Mod(10,n)^n)+1), s = 1); for(j=1, #p, my(e = znorder(Mod(10, p[j]))); if((e % 2 == 0) && (n % (e/2) == 0) && (n/(e/2) % 2 == 1), my(v = valuation(d, p[j])); d /= p[j]^v; s *= p[j]^((v+valuation(10^e-1, p[j]))\2))); my(f = factor(d)); for(i=1, #f~, s *= f[i,1]^((f[i,2]+1)\2)); s; \\ giving s such that 10^n + 1 = s^2*t where t is squarefree, considering only the three already-known terms of A045616
    A102567_length_n(n) = my(t = (10^n+1)/b(n)^2, lowlim = 1+sqrtint(10^(n-1)\t), uplim = sqrtint((10^n-1)\t)); vector(uplim-lowlim+1, i, (lowlim-1+i)^2 * t) \\ terms of the form a^2*t such that 10^(n-1) <= a^2*t <= 10^n - 1
    \\ Jianing Song, Nov 01 2024
  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A102567_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(0,a,all_roots=True)):
                if a*b <= k**2 < a*(a-1):
                    yield k**2//a
    A102567_list = list(islice(A102567_gen(),10)) # Chai Wah Wu, Feb 19 2024
    

Extensions

Entry revised by N. J. A. Sloane, Nov 14 2006 and also Nov 27 2006
Definition edited and reference added by William Rex Marshall, Nov 12 2010

A115556 Numbers whose square is the concatenation of two numbers 9*m and m.

Original entry on oeis.org

12857142857142857142857142857142857143, 25714285714285714285714285714285714286, 117391304347826086956521739130434782608695652173913043478261
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

a(4)=156521739130434782608695652173913043478260869565217391304348.
From Robert Israel, Aug 24 2023: (Start)
If 9 * 10^d + 1 = a^2 * b with a > 1, then a * b * c is a term if a^2/(90 + 10^(1-d)) < c^2 < a^2/(9 + 10^(-d)). For example, 9 * 10^d + 1 is divisible by 7^2 for d == 37 (mod 42), and then (9 * 10^d + 1)/7 and 2*(9 * 10^d + 1)/7 are terms. In particular, the sequence is infinite. (End)

Crossrefs

Programs

  • Maple
    F:= proc(d) local R,F,t,b,r,q,s,m0,x0,k;
         R:= NULL;
         F:= ifactors(9*10^d+1)[2];
         b:= mul(t[1]^floor(t[2]/2),t=F);
         for r in numtheory:-divisors(b) do
           x0:= (9*10^d+1)/r;
           m0:= x0/r;
           for k from ceil(sqrt(10^(d-1)/m0)) to floor(sqrt(10^d/m0)) do
             R:= R, x0*k;
           od
         od;
           R
    end proc:
    sort(map(F, [$1..90])); # Robert Israel, Aug 24 2023

Extensions

Definition modified by Georg Fischer, Jul 26 2019

A115527 Numbers k such that the concatenation of k with 2*k gives a square.

Original entry on oeis.org

3, 8163265306122448979592, 18367346938775510204082, 32653061224489795918368, 504986744097967428355005681100871102133568993813912384800
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			3_6 = 6^2.
		

Crossrefs

A115439 Numbers m such that the square of m is the concatenation of two numbers k and k+5.

Original entry on oeis.org

4, 7, 45, 56, 38163, 61838, 83618, 346980, 653021, 950051, 8647555, 9534265, 8167822283, 9007920992, 9209900792, 9950000501, 4737445289221, 4990568257187, 5009431742814, 5262554710780, 8373808925585, 8626931893551, 34323166122692, 34532758615690, 49625657225895, 49835249718893
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

All numbers of the form f(n)=9(n).5.0(2n).5.0(n-1).1 where n>0 are in the sequence because if k(n)=9(n).0(n).25.0(n-1).9(n).6 then f(n)^2=k(n).(k(n)+5). For example f(2)=9950000501; k(2)=9900250996 and f(2)^2=9950000501^2=9900250996.9900251001 =k(2).(k(2)+5). - Farideh Firoozbakht, Nov 26 2006
m^2 = (k)|(k+5) = (k)|(k) + 5 = (10^q + 1)*k + 5 where | denotes concatenation and q is the number of digits of k gives a nonlinear equation that can be solved using the solver below. - David A. Corneth, Jan 02 2021

Examples

			38163^2 = 14564_14569.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 02 2021

A115446 Numbers k such that the square of k is the concatenation of two numbers m and m-8.

Original entry on oeis.org

4623, 5378, 7981, 34953, 46866, 53135, 65048, 7056187, 9783460, 43176671, 56823330, 97999801, 447255476453, 552744523548, 755424659535, 799319866014, 997999998001, 4297663349524, 5702336650477, 6971253996228, 7574200549228, 8843117894979, 3505613322543666, 3757750389995601, 3948262973033353
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			18642249_18642241 = 43176671^2.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 02 2021

A115427 Numbers k such that k^2 is the concatenation of two numbers m and m+2.

Original entry on oeis.org

8874, 9011, 83352842, 99000101, 329767122288, 670232877713, 738226276373, 933006600341, 999000001001, 3779410975143115, 3872816717528067, 4250291784692550, 4278630943941867, 4372036686326819, 4749511753491302
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			9011^2 = 8119_8121.
		

Crossrefs

A115438 Numbers whose square is the concatenation of two numbers k and k+4.

Original entry on oeis.org

2, 310, 453, 548, 691, 856, 4382, 5619, 72730, 346533, 653468, 9090908, 94117646, 334665333, 336032387, 378253328, 390977442, 439928491, 483516486, 516483515, 560071510, 609022559, 621746673, 663967614, 665334668
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

From Farideh Firoozbakht, Nov 26 2006: (Start)
1. All numbers of the form f(n)=3(n).4.6(n).5.3(n+1) are in the sequence because if k(n)=1(n).2.0(n+1).8(n).5 then f(n)^2= k(n).(k(n)+4). For example f(3)=333466653333; k(3)=111200008885 and f(3)^2=333466653333^2=k(3).(k(3)+4)=111200008885.111200008889.
2. All numbers of the form g(n)=6(n).5.3(n).4.6(n).8 are in the sequence because g(0)=548 is in the sequence(548^2=300.304) and for n>0 if h(n)=4(n).2.6(n-1).70.2(n).0 then g(n)^2=h(n).(h(n)+4). For example g(5)=666665333334666668; h(5)=444442666670222220 and g(5)^2=h(5).(h(5)+4)=444442666670222220.444442666670222224. (End)

Examples

			120085_120089 = 346533^2.
		

Crossrefs

Extensions

The initial "2" (which is admittedly somewhat dubious) added by N. J. A. Sloane, Aug 13 2008

A115440 Numbers whose square is the concatenation of two numbers k and k+8.

Original entry on oeis.org

7747, 8021, 33294318, 66705683, 98000201, 340465755425, 476452552745, 523547447256, 659534244576, 866013200681, 998000002001, 3695104677080134, 3755782995538768, 4198081170077531, 4803478892324966, 5196521107675035
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			6001_6009 = 7747^2.
		

Crossrefs

A115441 Numbers whose square is the concatenation of two numbers k and k+9.

Original entry on oeis.org

465, 536, 718, 822, 3428, 6573, 90907, 980202, 3636361, 6363640, 41176468, 58823533, 413533838, 426573430, 428571426, 432620009, 567379992, 571428575, 573426571, 586466163, 686261111, 725274729, 727272725, 731321308
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			82640_82649 = 90907^2.
		

Crossrefs

A115442 Numbers whose square is the concatenation of two numbers k and k-2.

Original entry on oeis.org

8, 7312, 8991, 32524, 67477, 76568, 4891730, 5108271, 8528094, 71588336, 98999901, 399659933007, 600340066994, 723627738227, 877712329768, 998999999001, 3485626998114, 3787100274614, 6212899725387, 6514373001887
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			8083_8081 = 8991^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[Sqrt[k*10^IntegerLength[k]+k-2],{k,4,86*10^5}],IntegerQ] (* The program generates the first 9 terms of the sequence. *) (* Harvey P. Dale, Nov 02 2024 *)
Showing 1-10 of 47 results. Next