cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 574 results. Next

A106872 Primes of the form 2x^2+xy+4y^2.

Original entry on oeis.org

2, 5, 7, 19, 41, 59, 71, 97, 101, 103, 107, 109, 113, 157, 163, 191, 193, 211, 233, 257, 281, 307, 311, 317, 359, 373, 397, 419, 421, 439, 443, 467, 479, 503, 541, 547, 563, 593, 599, 659, 661, 683, 691, 701, 727, 733, 751, 769, 877, 887, 907, 977, 997, 1033
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-31.
Primes p such that the polynomial x^3-x^2-1 is irreducible over Zp. The polynomial discriminant is also -31. - T. D. Noe, May 13 2005

Crossrefs

Primes in A123064.

Programs

  • Mathematica
    Union[QuadPrimes2[2, 1, 4, 10000], QuadPrimes2[2, -1, 4, 10000]] (* see A106856 *)

A106891 Primes of the form x^2+xy+11y^2.

Original entry on oeis.org

11, 13, 17, 23, 31, 41, 43, 47, 53, 59, 67, 79, 83, 97, 101, 103, 107, 109, 127, 139, 167, 173, 181, 193, 197, 229, 239, 251, 269, 271, 281, 283, 293, 307, 311, 317, 337, 353, 359, 367, 379, 397, 401, 431, 439, 443, 461, 479, 487, 509, 541, 547, 557, 563
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-43.
Also, primes of the form x^2-xy+11y^2 with x and y nonnegative.
Also, primes which are a square (mod 43). - M. F. Hasler, Jan 15 2016
Also, primes p such that Legendre(-43,p) = 0 or 1. - N. J. A. Sloane, Dec 25 2017

Crossrefs

Primes in A035233. Cf. A106890.

Programs

  • Mathematica
    QuadPrimes2[1, -1, 11, 10000] (* see A106856 *)
  • PARI
    select(p->issquare(Mod(p,43))&&isprime(p),[1..1500]) \\ M. F. Hasler, Jan 15 2016

Extensions

New definition from N. J. A. Sloane, Jun 08 2014

A139668 Primes of the form x^2 + 1848*y^2.

Original entry on oeis.org

1873, 2017, 2137, 2377, 2473, 2689, 3217, 3529, 3697, 4057, 4657, 5569, 6073, 6337, 7177, 7393, 7417, 7561, 7681, 7753, 8017, 8089, 8233, 8353, 8737, 8761, 9241, 9601, 9769, 11113, 11257, 11617, 12049, 12433, 12457, 12721, 13297, 13633, 13729, 14281, 15073, 15313, 16417, 16633, 16657, 16921, 16993, 17257, 17977, 18313, 18481, 19009, 19273, 19441, 20113
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant = -7392.
The primes are congruent to {1, 25, 169, 289, 361, 529, 625, 697, 793, 841, 961, 1345, 1369, 1633, 1681} (mod 1848).
More than the usual number of terms are shown in order to display the difference from A244019. - N. J. A. Sloane, Jun 19 2014

Crossrefs

Cf. A244019 (a different sequence which agrees for the first 43 terms), A106856.

Programs

  • Magma
    [ p: p in PrimesUpTo(15000) | p mod 1848 in {1, 25, 169, 289, 361, 529, 625, 697, 793, 841, 961, 1345, 1369, 1633, 1681}]; // Vincenzo Librandi, Jul 29 2012
    
  • Magma
    k:=1848; [p: p in PrimesUpTo(21000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Maple
    fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i;
    dd:=4*a*c-b^2;
    if dd<=0 then error "Form should be positive definite."; break; fi;
    t1:={};
    xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));
    ylim:=ceil( 2*sqrt(a*M/dd));
    for x from 0 to xlim do
    for y from -ylim to ylim do
    t2 := a*x^2+b*x*y+c*y^2;
    if t2 <= M then t1:={op(t1),t2}; fi; od: od:
    t3:=sort(convert(t1,list));
    t4:=[];
    for i from 1 to nops(t3) do
       if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od:
    [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]];
    end;
    fd(1,0,1848,50000); # N. J. A. Sloane, Jun 19 2014
  • Mathematica
    QuadPrimes2[1, 0, 1848, 10000] (* see A106856 *)

A033209 Primes of form x^2 + 11*y^2.

Original entry on oeis.org

11, 47, 53, 103, 163, 199, 257, 269, 311, 397, 401, 419, 421, 499, 587, 599, 617, 683, 757, 773, 863, 883, 907, 911, 929, 991, 1021, 1087, 1109, 1123, 1181, 1237, 1291, 1307, 1367, 1433, 1439, 1543, 1567, 1571, 1609, 1621, 1697, 1699, 1753, 1873, 1907, 2003
Offset: 1

Views

Author

Keywords

Comments

Primes p such that the polynomial x^3-x^2-x-1 mod p has 3 zeros. Compare A106279. - T. D. Noe, May 02 2005

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243651.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 11, 10000] (* see A106856 *)

Extensions

Extended by T. D. Noe, Apr 17 2012

A106904 Primes of the form x^2-xy+13y^2, with x and y nonnegative.

Original entry on oeis.org

13, 19, 43, 67, 103, 127, 151, 157, 223, 229, 271, 307, 331, 349, 373, 409, 421, 433, 457, 463, 523, 577, 613, 631, 661, 727, 733, 739, 757, 769, 829, 859, 883, 919, 937, 967, 1021, 1033, 1039, 1063, 1069, 1087, 1123, 1171, 1237, 1249, 1279, 1291, 1327
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-51.
Also: Primes which are squares (mod 51). Differs from the subsequence A106903 (because x^2+xy+y^2 = (x+y)^2 - (x+y)y + y^2) from a(20) = 463 on, A106903(20) = 523. Terms which are not in A106903 are: 463, 631, 1033, 1039, 1279, 1291,... Up to 1279 these are also in A139643. Cf. also A191034. - M. F. Hasler, Jan 15 2016

Programs

  • Mathematica
    QuadPrimes2[1, -1, 13, 10000] (* see A106856 *)
  • PARI
    select(p->issquare(Mod(p,51))&&isprime(p),[1..1500]) \\ See A106903 for alternative code. - M. F. Hasler, Jan 15 2016

A106933 Primes of the form x^2-xy+17y^2, with x and y nonnegative.

Original entry on oeis.org

17, 19, 23, 29, 37, 47, 59, 67, 71, 73, 83, 89, 103, 107, 127, 131, 149, 151, 157, 163, 167, 173, 181, 193, 199, 211, 223, 227, 241, 257, 263, 269, 277, 283, 293, 307, 317, 349, 359, 389, 397, 419, 421, 431, 439, 449, 457, 461, 467, 479, 491, 509, 523, 557
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-67.
Also, primes p such that Legendre(-67,p) = 0 or 1. - N. J. A. Sloane, Dec 25 2017

Programs

  • Mathematica
    QuadPrimes2[1, -1, 17, 10000] (* see A106856 *)

A139502 Primes of the form x^2 + 22x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

241, 409, 601, 769, 1009, 1129, 1201, 1249, 1321, 1489, 1609, 1801, 2089, 2161, 2281, 2521, 2689, 3001, 3049, 3121, 3169, 3361, 3529, 3769, 3889, 4129, 4201, 4441, 4561, 4729, 4801, 4969, 5209, 5281, 5449, 5521, 5569, 5641, 5689, 5881, 6121, 6361, 6481
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 120y^2. - T. D. Noe, Apr 29 2008
Also primes of the form x^2+240y^2. See A140633. - T. D. Noe, May 19 2008
In base 12, the sequence is 181, 2X1, 421, 541, 701, 7X1, 841, 881, 921, X41, E21, 1061, 1261, 1301, 13X1, 1561, 1681, 18X1, 1921, 1981, 1X01, 1E41, 2061, 2221, 2301, 2481, 2521, 26X1, 2781, 28X1, 2941, 2X61, 3021, 3081, 31X1, 3241, 3281, 3321, 3361, 34X1, 3661, 3821, 3901, where X is 10 and E is 11. Moreover, the discriminant is 340. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 120 in {1, 49}]; // Vincenzo Librandi, Jul 28 2012
  • Mathematica
    QuadPrimes2[1, 0, 120, 10000] (* see A106856 *)

Formula

The primes are congruent to {1, 49} (mod 120). - T. D. Noe, Apr 29 2008

A033221 Primes of form x^2+31*y^2.

Original entry on oeis.org

31, 47, 67, 131, 149, 173, 227, 283, 293, 349, 379, 431, 521, 577, 607, 617, 653, 811, 839, 853, 857, 919, 937, 971, 1031, 1063, 1117, 1187, 1213, 1237, 1259, 1303, 1327, 1451, 1493, 1523, 1559, 1583, 1619, 1663, 1721, 1723, 1741, 1879, 1931, 1973, 1993, 2003, 2017, 2153, 2273, 2333, 2341, 2521, 2531, 2539, 2543, 2609, 2707, 2711, 2713, 2767, 2797
Offset: 1

Views

Author

Keywords

Comments

Also primes of the form x^2+xy+8y^2. - N. J. A. Sloane, Jun 02 2014
Also primes of the form x^2-xy+8y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that the polynomial X^3 + X + 1 splits mod p (see Williams and Hudson link). - Robert Israel, Jun 01 2020

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243176.

Programs

  • Maple
    N:= 10000: # for terms <= N
    S:= select(isprime,{31,seq(seq(x^2+31*y^2, y=1..floor(sqrt((N-x^2)/31))),
      x=1..floor(sqrt(N)))}):
    sort(convert(S,list)); # Robert Israel, Jun 01 2020
  • Mathematica
    QuadPrimes2[1, 0, 31, 10000] (* see A106856 *)

A033227 Primes of form x^2+39*y^2.

Original entry on oeis.org

43, 103, 139, 157, 181, 277, 367, 439, 523, 547, 607, 673, 751, 823, 991, 997, 1039, 1063, 1117, 1153, 1171, 1231, 1249, 1381, 1429, 1453, 1459, 1483, 1693, 1759, 1933, 1951, 1993, 1999, 2011, 2029, 2131
Offset: 1

Views

Author

Keywords

Comments

Also primes of the form x^2-xy+10y^2 with x and y nonnegative. - T. D. Noe, May 07 2005

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243194.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 39, 10000] (* see A106856 *)

A033232 Primes of form x^2+47*y^2.

Original entry on oeis.org

47, 83, 191, 197, 269, 439, 487, 523, 619, 761, 823, 907, 947, 977, 1193, 1277, 1319, 1447, 1481, 1499, 1579, 1693, 1709, 1741, 1811, 1861, 1867, 2053, 2213, 2221, 2273, 2339, 2351, 2447, 2539, 2777
Offset: 1

Views

Author

Keywords

Comments

Also primes of the form x^2-xy+12y^2 with x and y nonnegative. - T. D. Noe, May 08 2005

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243650.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 47, 10000] (* see A106856 *)
Previous Showing 31-40 of 574 results. Next