A077795
Numbers k such that (10^k - 1)/9 + 8*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 9, 53, 375, 453, 1749, 26619, 68033, 85179
Offset: 1
9 is a term because (10^9 - 1)/9 + 8*10^4 = 111191111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
A077796
Numbers k such that 7*(10^k - 1)/9 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 5, 17, 39, 41, 425, 561, 1775, 2043, 11031, 16233, 23705
Offset: 1
17 is a term because 7*(10^17 - 1)/9 + 2*10^8 = 77777777977777777.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n + 18*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 23800, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A183175
Numbers k such that (10^(2k+1) + 6*10^k - 1)/3 is prime.
Original entry on oeis.org
1, 2, 17, 79, 118, 162, 177, 185, 240, 824, 1820, 2354, 134811
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 6*10^n - 1)/3], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime((10^(2*n+1)+6*10^n-1)/3) \\ Charles R Greathouse IV, Jun 13 2017
A183176
Numbers k such that (10^(2k+1) + 12*10^k - 1)/3 is prime.
Original entry on oeis.org
1, 3, 7, 11, 13, 17, 29, 31, 33, 77, 933, 1555, 11758, 117707
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 12*10^n - 1)/3], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime((10^(2*n+1)+12*10^n-1)/3) \\ Charles R Greathouse IV, Jun 13 2017
A183177
Numbers n such that (10^(2n+1)+15*10^n-1)/3 is prime.
Original entry on oeis.org
1, 7, 85, 94, 273, 356, 1077, 1797, 6758, 30232
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 15*10^n - 1)/3], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime((10^(2*n+1)+15*10^n-1)/3) \\ Charles R Greathouse IV, Jun 13 2017
A183178
Numbers k such that 7*(10^(2*k+1)-1)/9 - 5*10^k is prime.
Original entry on oeis.org
0, 1, 3, 7, 10, 12, 480, 949, 1945, 7548, 8923
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(7*10^(2n + 1) - 45*10^n - 7)/9], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime((7*10^(2*n+1)-45*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017
Name edited and a(1) = 0 inserted by
M. F. Hasler, Feb 07 2020
A183179
Numbers n such that 7*(10^(2n+1)-1)/9 - 3*10^n is prime.
Original entry on oeis.org
2, 3, 6, 23, 36, 69, 561, 723, 3438, 4104, 9020, 13977, 19655, 32400
Offset: 1
- C. Caldwell and H. Dubner, The near repdigit primes A(n-k-1)B(1)A(k), especially 9(n-k-1)8(1)9(k), Journal of Recreational Mathematics, Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(7*10^(2n + 1) - 27*10^n - 7)/9], Print[n]], {n, 3000}]
-
for(n=1, 1e3, if(ispseudoprime((7*10^(2*n+1)-27*10^n-7)/9), print1(n, ", "))) \\ Altug Alkan, Nov 23 2015
A183180
Numbers k such that (7*10^(2k+1) - 18*10^k - 7)/9 is prime.
Original entry on oeis.org
0, 1, 7, 13, 58, 129, 253, 1657, 2244, 2437, 7924, 9903, 11899, 18157, 18957, 23665, 105609
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(7*10^(2n + 1) - 18*10^n - 7)/9], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime((7*10^(2*n+1)-18*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017
A183181
Numbers k such that (7*10^(2*k+1) - 9*10^k - 7)/9 is prime.
Original entry on oeis.org
4, 5, 8, 11, 1244, 1685, 2009, 14657, 15118, 20332, 50830, 75062
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(7*10^(2n + 1) - 9*10^n - 7)/9], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime((7*10^(2*n+1)-9*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017
A183182
Numbers k such that (7*10^(2*k+1) + 9*10^k - 7)/9 is prime.
Original entry on oeis.org
1, 3, 39, 54, 168, 240, 5328, 6159, 24675, 52227, 113887
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(7*10^(2n + 1) + 9*10^n - 7)/9], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime((7*10^(2*n+1)+9*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017
Comments