cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A301553 Expansion of Product_{k>=1} (1 + x^k)^(sigma_9(k)).

Original entry on oeis.org

1, 1, 513, 20197, 413669, 12445003, 372981573, 9158438541, 223776496101, 5567873958982, 132009631562091, 3018411978731059, 68171158091244082, 1512439928316217508, 32796174722883608382, 698503712498547606328, 14656105328324700415778, 302787437988353941515934
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Cf. A107742 (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(11 * Pi^(10/11) * (31*Zeta(11))^(1/11) * n^(10/11) / (2^(13/11) * 5^(10/11))) * (155*Zeta(11)/Pi)^(1/22) / (2^(155/264) * sqrt(11) * n^(6/11)).
G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 26 2018

A320235 G.f.: Product_{k>=1, j>=1} (1 + x^(k*j))^2.

Original entry on oeis.org

1, 2, 5, 12, 24, 48, 94, 172, 310, 550, 946, 1602, 2679, 4394, 7123, 11424, 18082, 28344, 44039, 67754, 103412, 156660, 235489, 351602, 521650, 768998, 1127100, 1642946, 2381929, 3436028, 4932998, 7049004, 10028422, 14207122, 20044327, 28169528, 39439899
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2018

Keywords

Comments

Self-convolution of A107742.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x]

Formula

Conjecture: log(a(n)) ~ Pi*sqrt(n*log(n)/3).

A327045 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)).

Original entry on oeis.org

1, 1, 2, 4, 5, 8, 13, 17, 24, 36, 47, 64, 89, 115, 152, 204, 260, 336, 438, 552, 702, 896, 1117, 1400, 1758, 2171, 2688, 3332, 4079, 5000, 6131, 7446, 9048, 10992, 13255, 15984, 19264, 23081, 27644, 33084, 39408, 46912, 55797, 66107, 78264, 92572, 109140
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 11^(1/4) * exp(sqrt(11*n/2)*Pi/3) / (2^(13/4)*sqrt(3)*n^(3/4)).

A327046 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 15, 21, 30, 45, 62, 85, 120, 161, 216, 293, 385, 505, 667, 862, 1112, 1438, 1833, 2330, 2965, 3733, 4688, 5887, 7334, 9114, 11319, 13970, 17203, 21162, 25905, 31643, 38605, 46911, 56891, 68904, 83179, 100224, 120603, 144719, 173360, 207396
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(5) * exp(5*Pi*sqrt(n)/6) / (16*sqrt(3)*n^(3/4)).

A327047 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) * (1 + x^(5*k)).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 16, 23, 34, 51, 72, 101, 143, 195, 267, 366, 487, 650, 866, 1135, 1487, 1940, 2504, 3226, 4145, 5283, 6714, 8513, 10725, 13481, 16905, 21085, 26244, 32588, 40299, 49732, 61229, 75131, 92004, 112435, 137009, 166627, 202269, 244919, 296038
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Comments

In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} (1 + x^(j*k))), then a(n) ~ HarmonicNumber(m)^(1/4) * exp(Pi*sqrt(HarmonicNumber(m)*n/3)) / (2^((m+3)/2) * 3^(1/4) * n^(3/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)) * (1+x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 137^(1/4) * exp(sqrt(137*n/5)*Pi/6) / (2^(9/2)*sqrt(3)*5^(1/4)*n^(3/4)).

A280663 G.f.: Product_{k>=1, j>=1} (1 + x^(j*k^3)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 17, 21, 26, 32, 39, 47, 57, 68, 81, 97, 115, 136, 162, 190, 223, 263, 306, 357, 417, 483, 561, 650, 750, 866, 997, 1145, 1315, 1507, 1725, 1971, 2250, 2564, 2917, 3318, 3766, 4270, 4840, 5475, 6188, 6990, 7881, 8881
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^(j*k^3), {k, 1, Floor[nmax^(1/3)]+1}, {j, 1, Floor[nmax/k^3]+1}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(Zeta(3)*n/3) + (2^(1/3)-1) * Pi^(-1/3) * Gamma(4/3) * Zeta(4/3) * Zeta(1/3) * (3*n/Zeta(3))^(1/6)) * Zeta(3)^(1/4) / (2^(5/4) * 3^(1/4) * n^(3/4)).

A318694 Expansion of e.g.f. Product_{i>=1, j>=1} (1 + x^(i*j)/(i*j)).

Original entry on oeis.org

1, 1, 2, 10, 40, 248, 1868, 14516, 131920, 1409040, 15697872, 191687472, 2663239104, 37878672960, 582357866400, 9898540886880, 172534018584960, 3192686545714560, 63844374067107840, 1309775114921541120, 28512040933544970240, 656888836504576112640, 15495311684125737031680
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1+x^k/k)^tau(k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[(1 + x^(i j)/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[(1 + x^k/k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-d)^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-d)^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

Formula

E.g.f.: Product_{k>=1} (1 + x^k/k)^tau(k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-d)^(1-k/d)*tau(d) ) * x^k/k).

A318811 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022

Formula

a(n) ~ 2^(1/3) * exp(1/6 + 3^(4/3) * n^(2/3) / (2^(1/3) * Pi^(2/3)) - n) * n^(n - 1/6) / (3*Pi)^(1/3).
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 07 2022

A320238 G.f.: Product_{k>=1, j>=1} (1 + x^(k*j)) / (1 - x^(k*j))^2.

Original entry on oeis.org

1, 3, 11, 31, 85, 209, 504, 1138, 2514, 5339, 11098, 22432, 44535, 86523, 165496, 311187, 577190, 1055524, 1907423, 3405574, 6016826, 10520065, 18222215, 31275320, 53230224, 89860112, 150551503, 250388180, 413572707, 678574627, 1106396434, 1793009335
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2018

Keywords

Comments

Convolution of A107742 and A320236.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(k*j))/(1-x^(k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x]

Formula

Conjecture: log(a(n)) ~ Pi * sqrt(5*n*log(n)/6).

A321192 a(n) = [x^n] Product_{k>=1} (1 + x^k)^tau_n(k), where tau_n(k) = number of ordered n-factorizations of k.

Original entry on oeis.org

1, 1, 2, 6, 20, 55, 239, 700, 3212, 10104, 48622, 161579, 806843, 2799199, 14379647, 52018828, 273472712, 1023655306, 5491615463, 21234676241, 115910309103, 460998296937, 2556361045845, 10440651927427, 58714921974979, 245586789818255, 1399187406060485
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 30; Table[SeriesCoefficient[Product[(1 + x^k)^tau[k, n], {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)

Formula

a(n) = [x^n] Product_{k_1>=1, k_2>=1, ..., k_n>=1} (1 + x^(k_1*k_2*...*k_n)).
Previous Showing 31-40 of 56 results. Next