cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 74 results. Next

A325609 Unsorted q-signature of n!. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the factorization of n! into factors q(i) = prime(i)/i.

Original entry on oeis.org

1, 2, 1, 4, 1, 5, 2, 1, 7, 3, 1, 9, 3, 1, 1, 12, 3, 1, 1, 14, 5, 1, 1, 16, 6, 2, 1, 17, 7, 3, 1, 1, 20, 8, 3, 1, 1, 22, 9, 3, 1, 1, 1, 25, 9, 3, 2, 1, 1, 27, 11, 4, 2, 1, 1, 31, 11, 4, 2, 1, 1, 33, 11, 4, 3, 1, 1, 1, 36, 13, 4, 3, 1, 1, 1, 39, 13, 4, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Row n is the sequence of nonzero exponents in the q-factorization of n!.
Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n!.

Examples

			We have 10! = q(1)^16 q(2)^6 q(3)^2 q(4), so row n = 10 is (16,6,2,1).
Triangle begins:
  {}
   1
   2  1
   4  1
   5  2  1
   7  3  1
   9  3  1  1
  12  3  1  1
  14  5  1  1
  16  6  2  1
  17  7  3  1  1
  20  8  3  1  1
  22  9  3  1  1  1
  25  9  3  2  1  1
  27 11  4  2  1  1
  31 11  4  2  1  1
  33 11  4  3  1  1  1
  36 13  4  3  1  1  1
  39 13  4  3  1  1  1  1
  42 14  5  3  1  1  1  1
		

Crossrefs

Row lengths are A000720.
Row sums are A325544(n) - 1.
Column k = 1 is A325543.
Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713, A324935.
Factorial numbers: A000142, A011371, A022559, A071626, A115627, A325276.
q-factorization: A324922, A324923, A324924, A325614, A325615, A325660.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length/@Split[difac[n!]],{n,20}]

A325662 Matula-Goebel numbers of regular rooted stars.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 16, 25, 27, 31, 32, 64, 81, 121, 125, 127, 128, 243, 256, 512, 625, 709, 729, 961, 1024, 1331, 2048, 2187, 3125, 4096, 5381, 6561, 8192, 14641, 15625, 16129, 16384, 19683, 29791, 32768, 52711, 59049, 65536, 78125, 131072, 161051
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Powers of members of A007097.
A regular rooted star is a rooted tree whose branches are all rooted paths of equal length.
The number of terms <= 10^k, k=0,1,2,...: 1, 7, 15, 26, 35, 46, 56, 67, 76, 87, 98, 109, 121, 131, 142, 154, 163, 175, 185, 198, 208, 220, 231, 241, 254, 265, 275, etc. - Robert G. Wilson v, May 13 2019

Examples

			The sequence of regular rooted stars together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    3: ((o))
    4: (oo)
    5: (((o)))
    8: (ooo)
    9: ((o)(o))
   11: ((((o))))
   16: (oooo)
   25: (((o))((o)))
   27: ((o)(o)(o))
   31: (((((o)))))
   32: (ooooo)
   64: (oooooo)
   81: ((o)(o)(o)(o))
  121: ((((o)))(((o))))
  125: (((o))((o))((o)))
  127: ((((((o))))))
  128: (ooooooo)
		

Crossrefs

Programs

  • Mathematica
    rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]];
    Select[Range[100],#==1||PrimePowerQ[#]&&rpQ[FactorInteger[#][[1,1]]]&]
    (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[emax]; s = Union[s, s1], {k, 2, Length[ps]}]; s]; seq[10] (* Amiram Eldar, Jul 26 2024 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Product_{k>=1} 1/(A007097(k)-1) = 2.8928887669834086909... - Amiram Eldar, Jul 26 2024

A325663 Matula-Goebel numbers of not necessarily regular rooted stars.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 36, 40, 44, 45, 48, 50, 54, 55, 60, 62, 64, 66, 72, 75, 80, 81, 88, 90, 93, 96, 99, 100, 108, 110, 120, 121, 124, 125, 127, 128, 132, 135, 144, 150, 155, 160, 162, 165, 176
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Products of members of A007097.
A rooted star is a rooted tree whose branches are all rooted paths.

Examples

			The sequence of rooted stars together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  15: ((o)((o)))
  16: (oooo)
  18: (o(o)(o))
  20: (oo((o)))
  22: (o(((o))))
  24: (ooo(o))
  25: (((o))((o)))
  27: ((o)(o)(o))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]];
    Select[Range[100],And@@rpQ/@First/@FactorInteger[#]&]
    (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1, s2}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[0, emax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= pmax &]; s = Union[s, s2], {k, 2, Length[ps]}]; s]; seq[7] (* Amiram Eldar, Jul 26 2024 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{k>=1} A007097(k)/(A007097(k)-1) = 4.30328607286382284593... . - Amiram Eldar, Jul 26 2024

A358728 Number of n-node rooted trees whose node-height is less than their number of leaves.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 10, 30, 76, 219, 582, 1662, 4614, 13080, 36903, 105098, 298689, 852734, 2434660, 6964349, 19931147, 57100177, 163647811, 469290004, 1346225668, 3863239150, 11089085961, 31838349956, 91430943515, 262615909503, 754439588007, 2167711283560
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 10 trees:
  .  .  .  (ooo)  (oooo)  (ooooo)   (oooooo)
                          ((oooo))  ((ooooo))
                          (o(ooo))  (o(oooo))
                          (oo(oo))  (oo(ooo))
                          (ooo(o))  (ooo(oo))
                                    (oooo(o))
                                    ((o)(ooo))
                                    ((oo)(oo))
                                    (o(o)(oo))
                                    (oo(o)(o))
		

Crossrefs

These trees are ranked by A358727.
For internals instead of node-height we have A358581, ordered A358585.
The case of equality is A358589 (square trees), ranked by A358577.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Depth[#]-1
    				
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->sum(j=h+1, n-1, polcoef(p,j,y))), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023

A358731 Matula-Goebel numbers of rooted trees whose number of nodes is one more than their node-height.

Original entry on oeis.org

4, 6, 7, 10, 13, 17, 22, 29, 41, 59, 62, 79, 109, 179, 254, 277, 293, 401, 599, 1063, 1418, 1609, 1787, 1913, 2749, 4397, 8527, 10762, 11827, 13613, 15299, 16519, 24859, 42043, 87803
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

These are paths with a single extra leaf growing from them.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The terms together with their corresponding rooted trees begin:
    4: (oo)
    6: (o(o))
    7: ((oo))
   10: (o((o)))
   13: ((o(o)))
   17: (((oo)))
   22: (o(((o))))
   29: ((o((o))))
   41: (((o(o))))
   59: ((((oo))))
   62: (o((((o)))))
   79: ((o(((o)))))
  109: (((o((o)))))
  179: ((((o(o)))))
  254: (o(((((o))))))
  277: (((((oo)))))
  293: ((o((((o))))))
  401: (((o(((o))))))
  599: ((((o((o))))))
		

Crossrefs

These trees are counted by A289207.
Positions of 1's in A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves.
MG differences: A358580, A358724, A358726, A358729.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Count[MGTree[#],_,{0,Infinity}]==Depth[MGTree[#]]&]

A196055 The terminal Wiener index of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 6, 6, 4, 4, 4, 8, 8, 8, 5, 12, 8, 10, 12, 10, 10, 5, 10, 15, 6, 10, 12, 16, 10, 12, 5, 20, 6, 10, 12, 18, 15, 15, 12, 18, 10, 19, 16, 12, 14, 12, 12, 24, 20, 14, 12, 19, 20, 21, 7, 26, 18, 12, 10, 21, 18, 6, 22, 30, 14, 14, 15, 20, 14, 22, 18, 28, 19, 18, 16, 26, 14, 22, 12, 28, 24, 12, 12, 30, 14, 19, 14, 21, 24, 24
Offset: 1

Views

Author

Emeric Deutsch, Sep 29 2011

Keywords

Comments

The terminal Wiener index of a connected graph is the sum of the distances between all pairs of nodes of degree 1.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m >= 2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

Examples

			a(7)=6 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y (2+2+2=6).
		

Crossrefs

Programs

  • Maple
    with(numtheory): TW := proc (n) local r, s, LV, EPL, Tw: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: LV := proc (n) if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then LV(pi(n)) else LV(r(n))+LV(s(n)) end if end proc: EPL := proc (n) if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then EPL(pi(n))+LV(pi(n)) else EPL(r(n))+EPL(s(n)) end if end proc: Tw := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then Tw(pi(n)) else Tw(r(n))+Tw(s(n))+EPL(r(n))*LV(s(n))+EPL(s(n))*LV(r(n)) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) = 1 then TW(pi(n))+LV(pi(n)) elif bigomega(n) = 1 then TW(pi(n))+EPL(n) else Tw(r(n))+Tw(s(n))+EPL(r(n))*LV(s(n))+EPL(s(n))*LV(r(n)) end if end proc; seq(TW(n), n = 1 .. 90);

Formula

Let LV(m) and EPL(m) denote the number of leaves and the external path length, respectively, of the rooted tree with Matula number m (see A109129 and A196048, where LV(m) and EPL(m) are obtained recursively). a(1)=0; if n=p(t) (=the t-th prime) and t is prime, then a(n) = a(t) + LV(t); if n=p(t) (=the t-th prime) and t is not prime, then a(n) = a(t) + LV(t) + EPL(t). Now assume that n is not prime; it can be written n=rs, where r is prime and s >= 2. If s is prime, then a(n) = a(r) - EPL(r) + a(s) - EPL(s) + EPL(r)*LV(s) + EPL(s)*LV(r); if s is not prime, then a(n) = a(r) - EPL(r) + a(s) + EPL(r)*LV(s) + EPL(s)*LV(r); the Maple program is based on this recursive formula.
If m > 2 then a(2^m) = m(m-1) because the rooted tree with Matula-Goebel number 2^m is a star with m edges and the vertices of each of the binomial(m,2) pairs of nodes of degree 1 are at distance 2.

A318048 Size of the span of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 4, 4, 2, 6, 6, 5, 4, 6, 3, 9, 2, 6, 6, 4, 6, 6, 8, 10, 4, 12, 6, 10, 4, 9, 9, 6, 2, 12, 6, 9, 6, 6, 4, 9, 6, 9, 7, 6, 8, 15, 10, 15, 4, 5, 12, 9, 7, 4, 10, 16, 4, 7, 9, 8, 9, 10, 10, 11, 2, 13, 12, 6, 7, 14, 10, 9, 6, 10, 7, 21, 3, 12, 10, 12, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

The span of a tree is defined to be the set of possible terminal subtrees of initial subtrees, or, which is the same, the set of possible initial subtrees of terminal subtrees.

Examples

			42 is the Matula-Goebel number of (o(o)(oo)), which has span {o, (o), (oo), (ooo), (oo(oo)), (o(o)o), (o(o)(oo))}, so a(42) = 7.
		

Crossrefs

Programs

  • Mathematica
    ext[c_,{}]:=c;ext[c_,s:{}]:=Extract[c,s];rpp[c_,v_,{}]:=v;rpp[c_,v_,s:{}]:=ReplacePart[c,v,s];
    RLO[ear_,rue:{}]:=Union@@(Function[x,rpp[ear,x,#2]]/@ReplaceList[ext[ear,#2],#1]&@@@Select[Tuples[{rue,Position[ear,_]}],MatchQ[ext[ear,#[[2]]],#[[1,1]]]&]);
    RL[ear_,rue:{}]:=FixedPoint[Function[keeps,Union[keeps,Join@@(RLO[#,rue]&/@keeps)]],{ear}];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGTree[n_]:=If[n==1,{},MGTree/@primeMS[n]];
    Table[Length[Union[Cases[RL[MGTree[n],{List[__List]:>List[]}],_List,{1,Infinity}]]],{n,100}]

A325608 Numbers whose factorization into factors prime(i)/i does not have weakly decreasing nonzero multiplicities.

Original entry on oeis.org

147, 245, 294, 357, 490, 511, 539, 588, 595, 637, 681, 714, 735, 845, 847, 853, 867, 903, 980, 1022, 1029, 1043, 1078, 1083, 1135, 1176, 1183, 1190, 1239, 1241, 1267, 1274, 1309, 1362, 1421, 1428, 1445, 1470, 1505, 1519, 1547, 1553, 1563, 1617, 1631, 1690
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example, 147 = q(1)^5 q(2) q(4)^2 has multiplicities (5,1,2), which are not weakly decreasing, so 147 belongs to the sequence.

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Select[Range[1000],!GreaterEqual@@Length/@Split[difac[#]]&]

A352288 Total cophenetic index of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 3, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 3, 3, 1, 0, 2, 1, 4, 0, 0, 1, 1, 0, 2, 0, 2, 1, 6, 0, 0, 1, 3, 1, 3, 0, 3, 0, 1, 0, 1, 0, 6, 2, 1, 1, 3, 0, 4, 3, 0, 3, 1, 1, 1, 0, 0, 2, 2, 1, 2, 4, 1
Offset: 1

Views

Author

Kevin Ryde, Mar 16 2022

Keywords

Comments

Mir, Rosselló, and Rotger, define the cophenetic value of a pair of childless vertices as the depth (distance down from the root) of their deepest common ancestor, and they then define the total cophenetic index of a tree as the sum of the cophenetic values over all such pairs.
a(n) = 0 iff n is in A325663, being rooted stars with any arm lengths, since the root (depth 0) is the common ancestor of every childless pair.
An identity relating the childless terminal Wiener index TW(n) = A348959(n) can be constructed by noting it measures distances from a pair of childless vertices to their common ancestor, and the cophenetic values measure from that ancestor up to the root. So 2*a(n) + TW(n) is total depths Ext(n) = A196048(n) of the childless vertices, repeated by childless vertices C(n) = A109129(n) except itself, so that 2*a(n) + TW(n) = Ext(n)*(C(n) - 1)

Examples

			For n=111, the tree and its childless pairs and deepest common ancestors are
  root  R         pair  ancestor depth
       / \         G,D     A       1
      A   B        G,E     A       1
     /|\   \       D,E     A       1
    C D E   F     any,F    R       0
    |                             ---
    G                 total a(n) = 3
		

Crossrefs

Cf. A348959 (terminal Wiener), A196048 (external length), A109129 (childless vertices).
Cf. A325663 (indices of 0's), A352289 (max by leaves).

Programs

  • PARI
    \\ See links.

Formula

a(n) = Sum_{i=1..k} a(primepi(p[i])) + binomial(C(p[i]),2), where n = p[1]*...*p[k] is the prime factorization of n with multiplicity (A027746), and C(n) = A109129(n) is the number of childless vertices.

A358554 Least Matula-Goebel number of a rooted tree with n internal (non-leaf) nodes.

Original entry on oeis.org

1, 2, 3, 5, 11, 25, 55, 121, 275, 605, 1331, 3025, 6655, 14641, 33275, 73205
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2022

Keywords

Comments

Positions of first appearances in A342507.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
      1: o
      2: (o)
      3: ((o))
      5: (((o)))
     11: ((((o))))
     25: (((o))((o)))
     55: (((o))(((o))))
    121: ((((o)))(((o))))
    275: (((o))((o))(((o))))
    605: (((o))(((o)))(((o))))
   1331: ((((o)))(((o)))(((o))))
   3025: (((o))((o))(((o)))(((o))))
   6655: (((o))(((o)))(((o)))(((o))))
  14641: ((((o)))(((o)))(((o)))(((o))))
  33275: (((o))((o))(((o)))(((o)))(((o))))
  73205: (((o))(((o)))(((o)))(((o)))(((o))))
		

Crossrefs

For height instead of internals we have A007097, firsts of A109082.
For leaves instead of internals we have A151821, firsts of A109129.
Positions of first appearances in A342507.
The ordered version gives firsts of A358553.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seq=Table[Count[MGTree[n],[_],{0,Infinity}],{n,1000}];
    Table[Position[seq,n][[1,1]],{n,Union[seq]}]
Previous Showing 61-70 of 74 results. Next