cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A166353 Exponential Riordan array [1+x*tan(x/2),x].

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 3, 0, 15, 0, 15, 0, 1, 0, 21, 0, 35, 0, 21, 0, 1, 17, 0, 84, 0, 70, 0, 28, 0, 1, 0, 153, 0, 252, 0, 126, 0, 36, 0, 1, 155, 0, 765, 0, 630, 0, 210, 0, 45, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 12 2009

Keywords

Comments

First column is aerated Genocchi number variant with e.g.f. 1+x*tan(x/2).
Row sums are A166354. Diagonal sums are A166355.

Examples

			Triangle begins
1,
0, 1,
1, 0, 1,
0, 3, 0, 1,
1, 0, 6, 0, 1,
0, 5, 0, 10, 0, 1,
3, 0, 15, 0, 15, 0, 1,
0, 21, 0, 35, 0, 21, 0, 1,
17, 0, 84, 0, 70, 0, 28, 0, 1,
0, 153, 0, 252, 0, 126, 0, 36, 0, 1,
155, 0, 765, 0, 630, 0, 210, 0, 45, 0, 1
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1 + # Tan[#/2]&, #&, 11, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)

Formula

T(n,k) = [k<=n]*G((n-k)/2)*C(n,k)*(1+(-1)^(n-k))/2 where
G(n)=0^n+2(-1)^n*(1-4^n)*sum{k=0..2n, sum{j=0..k, (-1)^j*C(k,j)*j^(2n)/(k+1)}}.

A166354 Row sums of exponential Riordan array [1+x*tan(x/2),x], A166353.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 34, 78, 200, 568, 1806, 6282, 24052, 99100, 443178, 2107966, 10775664, 58092112, 334087750, 2012990930, 12863046636, 85662585604, 602124105122, 4391793687974, 33676375206568, 266989039507576
Offset: 0

Views

Author

Paul Barry, Oct 12 2009

Keywords

Comments

Binomial transform of aerated Genocchi number variant with e.g.f. 1+x*tan(x/2).

Crossrefs

Cf. A110501.

Programs

  • Mathematica
    CoefficientList[Series[E^x*(1+x*Tan[x/2]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)

Formula

E.g.f.: exp(x)*(1+x*tan(x/2)).
a(n)=sum{k=0..n, C(n,k)*G(k/2)(1+(-1)^k)/2} where
G(n)=0^n+2(-1)^n*(1-4^n)*sum{k=0..2n, sum{j=0..k, (-1)^j*C(k,j)*j^(2n)/(k+1)}}.
a(n) ~ n! * 2*(exp(Pi)+(-1)^n*exp(-Pi))/Pi^n. - Vaclav Kotesovec, Oct 02 2013

A221971 G.f.: A(x,y) = Sum_{n>=0} n! * x^n*y^n * Product_{k=1..n} (1 + k*x) / (1 + k*x*y + k^2*x^2*y).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 3, 11, 1, 0, 0, 0, 27, 26, 1, 0, 0, 0, 17, 148, 57, 1, 0, 0, 0, 0, 278, 646, 120, 1, 0, 0, 0, 0, 155, 2590, 2481, 247, 1, 0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1, 0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2013

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 3, 11, 1;
0, 0, 0, 27, 26, 1;
0, 0, 0, 17, 148, 57, 1;
0, 0, 0, 0, 278, 646, 120, 1;
0, 0, 0, 0, 155, 2590, 2481, 247, 1;
0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1;
0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1;
0, 0, 0, 0, 0, 0, 80712, 614819, 590254, 96648, 2036, 1;
0, 0, 0, 0, 0, 0, 38227, 1665829, 5340996, 2948040, 307255, 4083, 1; ...
		

Crossrefs

Cf. A208237 (row sums), A110501 (central terms), A005439 (column sums), A136126.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0, n,m!*x^m*y^m*prod(k=1, m, (1+k*x)/(1+k*x*y+k^2*x^2*y +x*O(x^n)))),n,x),k,y)}
    for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))

Formula

Row sums equal A208237.
Central terms equal A110501, the Genocchi numbers of first kind (unsigned).
Columns sums equal A005439, the Genocchi numbers of second kind.

A223925 a(2n+1) = 2*n-1; a(2n)= 4^n.

Original entry on oeis.org

1, 4, 3, 16, 5, 64, 7, 256, 9, 1024, 11, 4096, 13, 16384, 15, 65536, 17, 262144, 19, 1048576, 21, 4194304, 23, 16777216, 25, 67108864, 27, 268435456, 29, 1073741824, 31
Offset: 1

Views

Author

Paul Curtz, Mar 29 2013

Keywords

Comments

If A132050(n) has offset 1 (proposed),
A132049(n)/A132050(n) = 2, 4, 3, 16/5, 25/8, 192/61,... leads to Pi (Euler, 1735)
A132049(n)/a(n) = (2/1=2, 4/4=1, 3/3=1, 16/16=1, 25/5=5, 192/64=3,... ). The second bisection 1, 1, 3, 17, 155, begins like A110501.
Conjecture: a(2n) is always a divisor of A132049(2n).

Crossrefs

Programs

  • Mathematica
    Table[ If[ OddQ[n], n, 4^(n/2)], {n, 1, 31}] (* Jean-François Alcover, Apr 02 2013 *)
    CoefficientList[Series[(1 + 4 x - 3 x^2 - 8 x^3 - 4 x^4 + 4 x^5) / ((1 - x)^2 (1 + x)^2 (1 - 2 x) (1 + 2 x)), {x, 0, 35}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    LinearRecurrence[{0,6,0,-9,0,4},{1,4,3,16,5,64},40] (* Harvey P. Dale, Jul 30 2018 *)

Formula

G.f.: x*(1+4*x-3*x^2-8*x^3-4*x^4+4*x^5)/((1-x)^2*(1+x)^2*(1-2x)*(1+2x)). - Philippe Deléham, Apr 01 2013
a(n) = 6*a(n-2) -9*a(n-4) + 4*a(n-6) with a(1) = 1, a(2) = 4, a(3) = 3, a(4) = 16, a(5) = 5, a(6) = 64. - Philippe Deléham, Apr 01 2013

Extensions

Conjecture about A132049(n)/a(n) modified by Jean-François Alcover, Apr 12 2013

A236935 The infinite Seidel matrix H read by antidiagonals upwards; H = (H(n,k): n,k >= 0).

Original entry on oeis.org

1, 0, -1, -1, -1, 0, 0, 1, 2, 2, 5, 5, 4, 2, 0, 0, -5, -10, -14, -16, -16, -61, -61, -56, -46, -32, -16, 0, 0, 61, 122, 178, 224, 256, 272, 272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, -1385, -2770, -4094, -5296, -6320, -7120, -7664, -7936, -7936, -50521, -50521, -49136, -46366, -42272, -36976, -30656, -23536, -15872, -7936, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 17 2014

Keywords

Comments

This is, in essence, a signed version of the triangle in A008280.

Examples

			Array begins:
     1   -1    0    2    0 -16   0 272 0 ...
     0   -1    2    2  -16 -16 272 272 ...
    -1    1    4  -14  -32 256 544 ...
     0    5  -10  -46  224 800 ...
     5   -5  -56  178 1024 ...
     0  -61  122 1202 ...
   -61   61 1324 ...
     0 1385 ...
  1385 ...
  ...
		

Crossrefs

Programs

  • PARI
    a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
    H(n,k) = sum(i=0, k, (-1)^i*binomial(k,i)*a(n+k-i)) /* Petros Hadjicostas, Feb 21 2021 */
    /* Second PARI program (same a(n) for A122045 as above) */
    H(n,k) = (-1)^(n+k)*sum(i=0, k, binomial(k,i)*a(n+i)) /* Petros Hadjicostas, Feb 21 2021 */

Formula

From Petros Hadjicostas, Feb 20 2021: (Start)
H(n,0) = A122045(n).
H(0,k) = (-1)^n*A155585(n).
H(n,k) = Sum_{i=0..n} binomial(n,i)*H(0,k+i).
H(n,k) = Sum_{i=0..k} (-1)^i*binomial(k,i)*H(n+k-i,0).
H(n,n) = A099023(n).
Bivariate e.g.f.: Sum_{n,k>=0} H(n,k)*(x^n/n!)*(y^k/k!) = 2*exp(x)/(1 + exp(2*(x+y))).
H(n,k) = (-1)^(n+k)*A239005(n+k,k), where the latter is a triangle.
H(n,k) = -A008280(n+k,k) if ((n+k) mod 4) == 1 or 2, and H(n,k) = A008280(n+k,k) if ((n+k) mod 4) == 3 or 0, provided A008280 is read as a triangle. (End)

Extensions

More terms from Petros Hadjicostas, Feb 21 2021

A240485 a(n) = -Zeta(1-n)*n*(2^(n+1) - 4) - Zeta(-n)*(n+1)*(2^(n+2) - 2), for n = 0 the limit is understood.

Original entry on oeis.org

1, 3, 2, -1, -2, 3, 6, -17, -34, 155, 310, -2073, -4146, 38227, 76454, -929569, -1859138, 28820619, 57641238, -1109652905, -2219305810, 51943281731, 103886563462, -2905151042481, -5810302084962, 191329672483963, 382659344967926, -14655626154768697
Offset: 0

Views

Author

Paul Curtz, Apr 06 2014

Keywords

Comments

Let G(m, n) denote the difference table of a(n):
1, 3, 2, -1, -2, 3, 6, -17, -34,...
2, -1, -3, -1, 5, 3, -23, -17,...
-3, -2, 2, 6, -2, -26, 6,...
1, 4, 4, -8, -24, 32,...
3, 0, -12, -16, 56,...
-3, -12, -4, 72,...
-9, 8, 76,...
17, 68,...
51,...
a(n) = G(0, n).
The main diagonal G(n, n) = 1, -1, 2, -8, 56, -608,... is essentially a signed version of A005439.
The first upper diagonal is the main diagonal multiplied by 3. G(n, n+1) = 3*G(n, n).
G(m, n) = G(m, n-1) + G(m+1,n-1).
Inverse binomial transform: after 1, 2, -3, A110501(n+1) is interleaved with 3*A110501(n+1), signed two by two. I. e. b(n) = 1, 2, -3, 1, 3, -3, -9, 17, 51,... . a(n+2) + b(n+2) = -1, 0, 1, 0, -3, 0, 17,... = A226158(n+2).
This is particular to the Genocchi numbers. If the first upper diagonal is proportional to the main diagonal (1, -1, 2, -8,...), the sequence and the inverse binomial transform are simply connected to the Genocchi numbers.

Crossrefs

Programs

  • Maple
    A240485 := proc(n) if n = 0 then 1 elif n = 1 then 3 else
    m := 2*iquo(n-1, 2) + 2; -2^irem(n-1, 2)*m*euler(m-1, 0) fi end:
    seq(A240485(n), n=0..27); # Peter Luschny, Apr 09 2014
  • Mathematica
    a[n_] := Which[n == 0, 1, n == 1, 3, True, m = 2*Quotient[n-1, 2]+2; -2^Mod[n-1, 2]*m*EulerE[m-1, 0]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 09 2014, after Peter Luschny *)
  • Sage
    def A240485(n):
        if n < 3: return [1,3,2][n]
        m = 2*((n+1)//2)
        b = 2*(1-2^m)*bernoulli(m)
        if is_even(n): b = 2*b
        return (-1)^ceil((n^2+1)/2)*b
    [A240485(n) for n in (0..24)]  # Peter Luschny, Apr 08 2014

Formula

a(2*n+1) = a(2*n+2)/2 for n > 0.
-a(2*n+2)/2 = A226158(2*n+2) = A001469(n+1) = (2*n+2)*E(2*n+1, 0) where E(n, x) are the Euler polynomials.
a(n) = -2*A226158(n) - A226158(n+1).
E.g.f.: (2*exp(x)*(3*x+exp(x)*(2*x+1)+1))/(exp(x)+1)^2. - Peter Luschny, Apr 10 2014

A272481 E.g.f. A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2) represented as a triangle, read by rows, where row n lists of coefficients T(n,k) of x^(2*n)*y^k/n! in A(x,y), for k=0..2*n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 3, 1, 0, 0, 3, 15, 25, 15, 3, 0, 0, 17, 119, 329, 455, 329, 119, 17, 0, 0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0, 0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0, 0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0, 0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0
Offset: 0

Views

Author

Paul D. Hanna, May 01 2016

Keywords

Comments

Row sums equal the Euler numbers, A000364.
Column 1 equals A110501, the unsigned Genocchi numbers of first kind.
Main diagonal equals A272482, where A272482(n) = A005799(n)/2^n * (2*n)!/(n!)^2.
Sum_{k=0..2*n} (-1)^k*T(n,k) = (-1)^n.
Sum_{k=0..2*n} (-2)^k*T(n,k) = 2*(-1)^n for n>0.
Sum_{k=0..2*n} 2^k*T(n,k) = (-1)^n*A210657(n).
Sum_{k=0..2*n} 3^k*T(n,k) = A000281(n).
Sum_{k=0..2*n} 4^k*T(n,k) = A272158(n).
Sum_{k=0..2*n} 2^k*3^(2*n-k)*T(n,k) = A272467(n).

Examples

			E.g.f.: A(x,y) = 1 + x^2*(y)/2! + x^4*(y + 3*y^2 + y^3)/4! +
x^6*(3*y + 15*y^2 + 25*y^3 + 15*y^4 + 3*y^5)/6! +
x^8*(17*y + 119*y^2 + 329*y^3 + 455*y^4 + 329*y^5 + 119*y^6 + 17*y^7)/8! +
x^10*(155*y + 1395*y^2 + 5325*y^3 + 11235*y^4 + 14301*y^5 + 11235*y^6 + 5325*y^7 + 1395*y^8 + 155*y^9)/10! +
x^12*(2073*y + 22803*y^2 + 110605*y^3 + 311355*y^4 + 563013*y^5 + 683067*y^6 + 563013*y^7 + 311355*y^8 + 110605*y^9 + 22803*y^10 + 2073*y^11)/12! +...
where A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2).
This triangle of coefficients of x^(2*n)*y^k/(2*n)!, k=0..2*n, begins:
[1];
[0, 1, 0];
[0, 1, 3, 1, 0];
[0, 3, 15, 25, 15, 3, 0];
[0, 17, 119, 329, 455, 329, 119, 17, 0];
[0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0];
[0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0];
[0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0];
[0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0]; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = my(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(polcoeff( cos((X-x*y)/2)/cos((X+x*y)/2), 2*n,x), k,y)}
    for(n=0,10, for(k=0,2*n, print1(T(n,k),", "));print(""))

Formula

E.g.f.: A(x,y) = (cos(x) + cos(x*y)) / (1 + cos(x + x*y)).
E.g.f.: A(x,y) = (sin(x) + sin(x*y)) / sin(x + x*y).
E.g.f.: A(x,y) = (exp(i*x) + exp(i*x*y)) / (1 + exp(i*(x + x*y))), where i^2 = -1.
O.g.f.: 1/(1 - 1*y*x/(1 - (1+y)^2*x/(1 - (1+2*y)*(2+1*y)*x/(1 - (2+2*y)^2*x/(1 - (2+3*y)*(3+2*y)*x/(1 - (3+3*y)^2*x/(1 - (3+4*y)*(4+3*y)*x/(1 - (4+4*y)^2*x/(1 - (4+5*y)*(5+4*y)*x/(1 - (5+5*y)^2*x/(1 - ...))))))))))), a continued fraction.

A296836 Expansion of e.g.f. exp(x*tanh(x/2)) (even powers only).

Original entry on oeis.org

1, 1, 2, 3, -3, 20, 105, -5271, 133826, -2714517, 25525845, 2131781300, -235250824479, 17527695547713, -1124258412169438, 58383380825728035, -975024061456732035, -398903577787777972396, 97649546210035758250281, -17069419358223320552890167
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			exp(x*tanh(x/2)) = 1 + x^2/2! + 2*x^4/4! + 3*x^6/6! - 3*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 19; Table[(CoefficientList[Series[Exp[x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*tanh(x/2)).

A166355 Diagonal sums of exponential Riordan array [1+x*tan(x/2),x], A166353.

Original entry on oeis.org

1, 2, 5, 15, 64, 443, 4887, 78996, 1745995, 50333929, 1829758158, 81753825477, 4399497764477, 280491321580150, 20898005984605281, 1798558057748753171, 177034863818072607020, 19758697171102806823327
Offset: 0

Views

Author

Paul Barry, Oct 12 2009

Keywords

Comments

Aerated sequence gives diagonal sums of A166353.

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    nmax = 17; R = RiordanArray[1 + # Tan[#/2]&, #&, 2 nmax + 1, True];
    a[n_] := Sum[R[[i, 2 n - i + 2]], {i, 2 n + 1, n + 1, -1}];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 20 2019 *)

Formula

a(n)=sum{k=0..n, C(n+k,2k)*G(k)} where G(n)=0^n+2(-1)^n*(1-4^n)*sum{k=0..2n, sum{j=0..k, (-1)^j*C(k,j)*j^(2n)/(k+1)}}.

A211194 G.f.: Sum_{n>=0} n! * (x/2)^n * Product_{k=1..n} (3*k-1) / (1 + k*(3*k-1)/2*x).

Original entry on oeis.org

1, 1, 4, 31, 394, 7441, 195544, 6822451, 305075254, 17010802021, 1157048302084, 94291964597671, 9069435785880514, 1016607721798423801, 131360503523334458224, 19382685928544981625691, 3239003918648541605116174, 608539911518928818091672781
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2013

Keywords

Comments

O.g.f. is related to pentagonal numbers A000326. If b(n) = A000326(n)*x/(1+A000326(n)x), we have A(x) = 1 +b(1) +b(1)b(2) +b(1)b(2)b(3) +b(1)b(2)b(3)b(4) + ... . Philippe Deléham, Feb 04 2013

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 797*x^4 + 19417*x^5 + 661829*x^6 +...
where
A(x) = 1 + 1*x/(1+x) + 1*5*x^2/((1+x)*(1+5*x)) + 1*5*12*x^3/((1+x)*(1+5*x)*(1+12*x)) + 1*5*12*22*x^4/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)) + 1*5*12*22*35*x^5/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)*(1+35*x)) + 1*5*12*22*35*51*x^6/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)*(1+35*x)*(1+51*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0, n, m!*(x/2)^m*prod(k=1, m, (3*k-1)/(1+(3*k-1)/2*k*x+x*O(x^n)))), n)}
    for(n=0,21,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} A084939(n) * x^n / Product_{k=1..n} (1 + k*(3*k-1)/2*x).
a(n) = Sum_{k, 0<=k<=n} A211183(n,k)*3^(n-k). - Philippe Deléham, Feb 03 2013
Previous Showing 31-40 of 51 results. Next