A166353
Exponential Riordan array [1+x*tan(x/2),x].
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 3, 0, 15, 0, 15, 0, 1, 0, 21, 0, 35, 0, 21, 0, 1, 17, 0, 84, 0, 70, 0, 28, 0, 1, 0, 153, 0, 252, 0, 126, 0, 36, 0, 1, 155, 0, 765, 0, 630, 0, 210, 0, 45, 0, 1
Offset: 0
Triangle begins
1,
0, 1,
1, 0, 1,
0, 3, 0, 1,
1, 0, 6, 0, 1,
0, 5, 0, 10, 0, 1,
3, 0, 15, 0, 15, 0, 1,
0, 21, 0, 35, 0, 21, 0, 1,
17, 0, 84, 0, 70, 0, 28, 0, 1,
0, 153, 0, 252, 0, 126, 0, 36, 0, 1,
155, 0, 765, 0, 630, 0, 210, 0, 45, 0, 1
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1 + # Tan[#/2]&, #&, 11, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
A166354
Row sums of exponential Riordan array [1+x*tan(x/2),x], A166353.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 34, 78, 200, 568, 1806, 6282, 24052, 99100, 443178, 2107966, 10775664, 58092112, 334087750, 2012990930, 12863046636, 85662585604, 602124105122, 4391793687974, 33676375206568, 266989039507576
Offset: 0
-
CoefficientList[Series[E^x*(1+x*Tan[x/2]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
A221971
G.f.: A(x,y) = Sum_{n>=0} n! * x^n*y^n * Product_{k=1..n} (1 + k*x) / (1 + k*x*y + k^2*x^2*y).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 3, 11, 1, 0, 0, 0, 27, 26, 1, 0, 0, 0, 17, 148, 57, 1, 0, 0, 0, 0, 278, 646, 120, 1, 0, 0, 0, 0, 155, 2590, 2481, 247, 1, 0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1, 0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1, 0, 0, 0
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 3, 11, 1;
0, 0, 0, 27, 26, 1;
0, 0, 0, 17, 148, 57, 1;
0, 0, 0, 0, 278, 646, 120, 1;
0, 0, 0, 0, 155, 2590, 2481, 247, 1;
0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1;
0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1;
0, 0, 0, 0, 0, 0, 80712, 614819, 590254, 96648, 2036, 1;
0, 0, 0, 0, 0, 0, 38227, 1665829, 5340996, 2948040, 307255, 4083, 1; ...
-
{T(n,k)=polcoeff(polcoeff(sum(m=0, n,m!*x^m*y^m*prod(k=1, m, (1+k*x)/(1+k*x*y+k^2*x^2*y +x*O(x^n)))),n,x),k,y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
A223925
a(2n+1) = 2*n-1; a(2n)= 4^n.
Original entry on oeis.org
1, 4, 3, 16, 5, 64, 7, 256, 9, 1024, 11, 4096, 13, 16384, 15, 65536, 17, 262144, 19, 1048576, 21, 4194304, 23, 16777216, 25, 67108864, 27, 268435456, 29, 1073741824, 31
Offset: 1
-
Table[ If[ OddQ[n], n, 4^(n/2)], {n, 1, 31}] (* Jean-François Alcover, Apr 02 2013 *)
CoefficientList[Series[(1 + 4 x - 3 x^2 - 8 x^3 - 4 x^4 + 4 x^5) / ((1 - x)^2 (1 + x)^2 (1 - 2 x) (1 + 2 x)), {x, 0, 35}], x] (* Vincenzo Librandi, Jul 20 2013 *)
LinearRecurrence[{0,6,0,-9,0,4},{1,4,3,16,5,64},40] (* Harvey P. Dale, Jul 30 2018 *)
A236935
The infinite Seidel matrix H read by antidiagonals upwards; H = (H(n,k): n,k >= 0).
Original entry on oeis.org
1, 0, -1, -1, -1, 0, 0, 1, 2, 2, 5, 5, 4, 2, 0, 0, -5, -10, -14, -16, -16, -61, -61, -56, -46, -32, -16, 0, 0, 61, 122, 178, 224, 256, 272, 272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, -1385, -2770, -4094, -5296, -6320, -7120, -7664, -7936, -7936, -50521, -50521, -49136, -46366, -42272, -36976, -30656, -23536, -15872, -7936, 0
Offset: 0
Array begins:
1 -1 0 2 0 -16 0 272 0 ...
0 -1 2 2 -16 -16 272 272 ...
-1 1 4 -14 -32 256 544 ...
0 5 -10 -46 224 800 ...
5 -5 -56 178 1024 ...
0 -61 122 1202 ...
-61 61 1324 ...
0 1385 ...
1385 ...
...
- D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
- D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Annals of Discrete Mathematics, 6 (1980), 77-87.
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, European Journal of Combinatorics, 42 (2014), 243-260.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), pp. 157-187; see Beilage 4 (p. 187).
-
a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
H(n,k) = sum(i=0, k, (-1)^i*binomial(k,i)*a(n+k-i)) /* Petros Hadjicostas, Feb 21 2021 */
/* Second PARI program (same a(n) for A122045 as above) */
H(n,k) = (-1)^(n+k)*sum(i=0, k, binomial(k,i)*a(n+i)) /* Petros Hadjicostas, Feb 21 2021 */
A240485
a(n) = -Zeta(1-n)*n*(2^(n+1) - 4) - Zeta(-n)*(n+1)*(2^(n+2) - 2), for n = 0 the limit is understood.
Original entry on oeis.org
1, 3, 2, -1, -2, 3, 6, -17, -34, 155, 310, -2073, -4146, 38227, 76454, -929569, -1859138, 28820619, 57641238, -1109652905, -2219305810, 51943281731, 103886563462, -2905151042481, -5810302084962, 191329672483963, 382659344967926, -14655626154768697
Offset: 0
-
A240485 := proc(n) if n = 0 then 1 elif n = 1 then 3 else
m := 2*iquo(n-1, 2) + 2; -2^irem(n-1, 2)*m*euler(m-1, 0) fi end:
seq(A240485(n), n=0..27); # Peter Luschny, Apr 09 2014
-
a[n_] := Which[n == 0, 1, n == 1, 3, True, m = 2*Quotient[n-1, 2]+2; -2^Mod[n-1, 2]*m*EulerE[m-1, 0]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 09 2014, after Peter Luschny *)
-
def A240485(n):
if n < 3: return [1,3,2][n]
m = 2*((n+1)//2)
b = 2*(1-2^m)*bernoulli(m)
if is_even(n): b = 2*b
return (-1)^ceil((n^2+1)/2)*b
[A240485(n) for n in (0..24)] # Peter Luschny, Apr 08 2014
A272481
E.g.f. A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2) represented as a triangle, read by rows, where row n lists of coefficients T(n,k) of x^(2*n)*y^k/n! in A(x,y), for k=0..2*n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 3, 1, 0, 0, 3, 15, 25, 15, 3, 0, 0, 17, 119, 329, 455, 329, 119, 17, 0, 0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0, 0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0, 0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0, 0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0
Offset: 0
E.g.f.: A(x,y) = 1 + x^2*(y)/2! + x^4*(y + 3*y^2 + y^3)/4! +
x^6*(3*y + 15*y^2 + 25*y^3 + 15*y^4 + 3*y^5)/6! +
x^8*(17*y + 119*y^2 + 329*y^3 + 455*y^4 + 329*y^5 + 119*y^6 + 17*y^7)/8! +
x^10*(155*y + 1395*y^2 + 5325*y^3 + 11235*y^4 + 14301*y^5 + 11235*y^6 + 5325*y^7 + 1395*y^8 + 155*y^9)/10! +
x^12*(2073*y + 22803*y^2 + 110605*y^3 + 311355*y^4 + 563013*y^5 + 683067*y^6 + 563013*y^7 + 311355*y^8 + 110605*y^9 + 22803*y^10 + 2073*y^11)/12! +...
where A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2).
This triangle of coefficients of x^(2*n)*y^k/(2*n)!, k=0..2*n, begins:
[1];
[0, 1, 0];
[0, 1, 3, 1, 0];
[0, 3, 15, 25, 15, 3, 0];
[0, 17, 119, 329, 455, 329, 119, 17, 0];
[0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0];
[0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0];
[0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0];
[0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0]; ...
-
{T(n,k) = my(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(polcoeff( cos((X-x*y)/2)/cos((X+x*y)/2), 2*n,x), k,y)}
for(n=0,10, for(k=0,2*n, print1(T(n,k),", "));print(""))
A296836
Expansion of e.g.f. exp(x*tanh(x/2)) (even powers only).
Original entry on oeis.org
1, 1, 2, 3, -3, 20, 105, -5271, 133826, -2714517, 25525845, 2131781300, -235250824479, 17527695547713, -1124258412169438, 58383380825728035, -975024061456732035, -398903577787777972396, 97649546210035758250281, -17069419358223320552890167
Offset: 0
exp(x*tanh(x/2)) = 1 + x^2/2! + 2*x^4/4! + 3*x^6/6! - 3*x^8/8! + ...
-
nmax = 19; Table[(CoefficientList[Series[Exp[x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A166355
Diagonal sums of exponential Riordan array [1+x*tan(x/2),x], A166353.
Original entry on oeis.org
1, 2, 5, 15, 64, 443, 4887, 78996, 1745995, 50333929, 1829758158, 81753825477, 4399497764477, 280491321580150, 20898005984605281, 1798558057748753171, 177034863818072607020, 19758697171102806823327
Offset: 0
-
(* The function RiordanArray is defined in A256893. *)
nmax = 17; R = RiordanArray[1 + # Tan[#/2]&, #&, 2 nmax + 1, True];
a[n_] := Sum[R[[i, 2 n - i + 2]], {i, 2 n + 1, n + 1, -1}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 20 2019 *)
A211194
G.f.: Sum_{n>=0} n! * (x/2)^n * Product_{k=1..n} (3*k-1) / (1 + k*(3*k-1)/2*x).
Original entry on oeis.org
1, 1, 4, 31, 394, 7441, 195544, 6822451, 305075254, 17010802021, 1157048302084, 94291964597671, 9069435785880514, 1016607721798423801, 131360503523334458224, 19382685928544981625691, 3239003918648541605116174, 608539911518928818091672781
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 797*x^4 + 19417*x^5 + 661829*x^6 +...
where
A(x) = 1 + 1*x/(1+x) + 1*5*x^2/((1+x)*(1+5*x)) + 1*5*12*x^3/((1+x)*(1+5*x)*(1+12*x)) + 1*5*12*22*x^4/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)) + 1*5*12*22*35*x^5/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)*(1+35*x)) + 1*5*12*22*35*51*x^6/((1+x)*(1+5*x)*(1+12*x)*(1+22*x)*(1+35*x)*(1+51*x)) +...
-
{a(n)=polcoeff(sum(m=0, n, m!*(x/2)^m*prod(k=1, m, (3*k-1)/(1+(3*k-1)/2*k*x+x*O(x^n)))), n)}
for(n=0,21,print1(a(n),", "))
Comments