1, 0, 1, 0, -2, 1, 0, 6, -6, 1, 0, -24, 36, -12, 1, 0, 120, -240, 120, -20, 1, 0, -720, 1800, -1200, 300, -30, 1, 0, 5040, -15120, 12600, -4200, 630, -42, 1, 0, -40320, 141120, -141120, 58800, -11760, 1176, -56, 1, 0, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016, -72, 1
Offset: 0
Binomial convolution of row polynomials: p(3,x) = 6*x-6*x^2+x^3; p(2,x) = -2*x+x^2, p(1,x) = x, p(0,x) = 1,
together with those from A111595: s(3,x) = 9*x-6*x^2+x^3; s(2,x) = 1-2*x+x^2, s(1,x) = x, s(0,x) = 1; therefore
9*(x+y)-6*(x+y)^2+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = (6*y-6*y^2+y^3) + 3*x*(-2*y+y^2) + 3*(1-2*x+x^2)*y + 9*x-6*x^2+x^3.
From _Wolfdieter Lang_, Apr 28 2014: (Start)
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7
0: 1
1: 0 1
2: 0 -2 1
3: 0 6 -6 1
4: 0 -24 36 -12 1
5: 0 120 -240 120 -20 1
6: 0 -720 1800 -1200 300 -30 1
7: 0 5040 -15120 12600 -4200 630 -42 1
...
For more rows see the link.
(End)
A111601
Exponential (binomial) convolution of A001818 (with interspersed zeros) and A000142 (factorials).
Original entry on oeis.org
1, 2, 9, 36, 225, 1350, 11025, 88200, 893025, 8930250, 108056025, 1296672300, 18261468225, 255660555150, 4108830350625, 65741285610000, 1187451971330625, 21374135483951250, 428670161650355625, 8573403233007112500
Offset: 1
Second column (m=1) of triangle |
A111595|.
Comments