cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 1730 results. Next

A360005 Two times the median of the multiset of prime indices of n.

Original entry on oeis.org

2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 2, 12, 5, 5, 2, 14, 4, 16, 2, 6, 6, 18, 2, 6, 7, 4, 2, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 2, 26, 4, 28, 2, 4, 10, 30, 2, 8, 6, 9, 2, 32, 4, 8, 2, 10, 11, 34, 3, 36, 12, 4, 2, 9, 4, 38, 2, 11, 6, 40, 2, 42, 13, 6, 2, 9, 4, 44, 2
Offset: 2

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so a(360) = 3.
		

Crossrefs

The triangle for this statistic is A359893, cf. A359901, A359902.
Positions of even terms are A359908, odd A359912.
Positions of first appearances are A360006, sorted A360007.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[prix[n]],{n,2,100}]

A351294 Numbers whose multiset of prime factors has at least one permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

First differs from A130091 (Wilf partitions) in having 216.
See A239455 for the definition of Look-and-Say partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()            20: (3,1,1)         47: (15)
      2: (1)           23: (9)             48: (2,1,1,1,1)
      3: (2)           24: (2,1,1,1)       49: (4,4)
      4: (1,1)         25: (3,3)           50: (3,3,1)
      5: (3)           27: (2,2,2)         52: (6,1,1)
      7: (4)           28: (4,1,1)         53: (16)
      8: (1,1,1)       29: (10)            54: (2,2,2,1)
      9: (2,2)         31: (11)            56: (4,1,1,1)
     11: (5)           32: (1,1,1,1,1)     59: (17)
     12: (2,1,1)       37: (12)            61: (18)
     13: (6)           40: (3,1,1,1)       63: (4,2,2)
     16: (1,1,1,1)     41: (13)            64: (1,1,1,1,1,1)
     17: (7)           43: (14)            67: (19)
     18: (2,2,1)       44: (5,1,1)         68: (7,1,1)
     19: (8)           45: (3,2,2)         71: (20)
For example, the prime indices of 216 are {1,1,1,2,2,2}, and there are four permutations with distinct run-lengths: (1,1,2,2,2,1), (1,2,2,2,1,1), (2,1,1,1,2,2), (2,2,1,1,1,2); so 216 is in the sequence. It is the Heinz number of the Look-and-Say partition of (3,3,2,1).
		

Crossrefs

The Wilf case (distinct multiplicities) is A130091, counted by A098859.
The complement of the Wilf case is A130092, counted by A336866.
These partitions appear to be counted by A239455.
A variant for runs is A351201, counted by A351203 (complement A351204).
The complement is A351295, counted by A351293.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of run-lengths in binary expansion, for all runs A297770.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]!={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A299702 Heinz numbers of knapsack partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,t,S,i,r;
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]);
      S:= {0}: r:= 1;
      for t in F do
       S:= map(s -> seq(s + i*t[1],i=0..t[2]),S);
       r:= r*(t[2]+1);
       if nops(S) <> r then return false fi
      od;
      true
    end proc:
    select(filter, [$1..100]); # Robert Israel, Oct 30 2024
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Plus@@@Union[Rest@Subsets[primeMS[#]]]&]

A066328 a(n) = sum of indices of distinct prime factors of n; here, index(i-th prime) = i.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 3, 6, 5, 5, 1, 7, 3, 8, 4, 6, 6, 9, 3, 3, 7, 2, 5, 10, 6, 11, 1, 7, 8, 7, 3, 12, 9, 8, 4, 13, 7, 14, 6, 5, 10, 15, 3, 4, 4, 9, 7, 16, 3, 8, 5, 10, 11, 17, 6, 18, 12, 6, 1, 9, 8, 19, 8, 11, 8, 20, 3, 21, 13, 5, 9, 9, 9, 22, 4, 2, 14, 23, 7, 10, 15, 12, 6, 24, 6, 10
Offset: 1

Views

Author

Leroy Quet, Jan 01 2002

Keywords

Comments

Equals row sums of triangle A143542. - Gary W. Adamson, Aug 23 2008
a(n) = the sum of the distinct parts of the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(75) = 5; indeed, the partition having Heinz number 75 = 3*5*5 is [2,3,3] and 2 + 3 = 5. - Emeric Deutsch, Jun 04 2015

Examples

			a(24) = 1 + 2 = 3 because 24 = 2^3 * 3 = p(1)^3 * p(2), p(k) being the k-th prime.
From _Gus Wiseman_, Mar 09 2019: (Start)
The distinct prime indices of 1..20 and their sums.
   1: () = 0
   2: (1) = 1
   3: (2) = 2
   4: (1) = 1
   5: (3) = 3
   6: (1+2) = 3
   7: (4) = 4
   8: (1) = 1
   9: (2) = 2
  10: (1+3) = 4
  11: (5) = 5
  12: (1+2) = 3
  13: (6) = 6
  14: (1+4) = 5
  15: (2+3) = 5
  16: (1) = 1
  17: (7) = 7
  18: (1+2) = 3
  19: (8) = 8
  20: (1+3) = 4
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(pi(d), d in factorset(n)), n=1..100); # Ridouane Oudra, Aug 19 2019
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_] := (Plus @@ PrimePi[ PrimeFactors[n]]); Table[ f[n], {n, 91}] (* Robert G. Wilson v, May 04 2004 *)
  • PARI
    { for (n=1, 1000, f=factor(n); a=0; for (i=1, matsize(f)[1], a+=primepi(f[i, 1])); write("b066328.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 10 2010
    
  • PARI
    a(n)=my(f=factor(n)[,1]); sum(i=1,#f,primepi(f[i])) \\ Charles R Greathouse IV, May 11 2015
    
  • PARI
    A066328(n) = vecsum(apply(primepi,(factor(n)[,1]))); \\ Antti Karttunen, Sep 06 2018
    
  • Python
    from sympy import primepi, primefactors
    def A066328(n): return sum(map(primepi,primefactors(n))) # Chai Wah Wu, Mar 13 2024

Formula

G.f.: Sum_{k>=1} k*x^prime(k)/(1-x^prime(k)). - Vladeta Jovovic, Aug 11 2004
Additive with a(p^e) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = A056239(A007947(n)). - Antti Karttunen, Sep 06 2018
a(n) = Sum_{p|n} A000720(p), where p is a prime. - Ridouane Oudra, Aug 19 2019

A048767 If n = Product (p_j^k_j) then a(n) = Product ( prime(k_j)^pi(p_j) ) where pi is A000720.

Original entry on oeis.org

1, 2, 4, 3, 8, 8, 16, 5, 9, 16, 32, 12, 64, 32, 32, 7, 128, 18, 256, 24, 64, 64, 512, 20, 27, 128, 25, 48, 1024, 64, 2048, 11, 128, 256, 128, 27, 4096, 512, 256, 40, 8192, 128, 16384, 96, 72, 1024, 32768, 28, 81, 54, 512, 192, 65536, 50, 256, 80, 1024, 2048
Offset: 1

Views

Author

Keywords

Comments

If the prime power factors p^e of n are replaced by prime(e)^pi(p), then the prime terms q in the sequence pertain to 2^m with m > 1, since pi(2) = 1. - Michael De Vlieger, Apr 25 2017
Also the Heinz number of the integer partition obtained by applying the map described in A217605 (which interchanges the parts with their multiplicities) to the integer partition with Heinz number n, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The image of this map (which is the union of this sequence) is A130091. - Gus Wiseman, May 04 2019

Examples

			For n=6, 6 = (2^1)*(3^1), a(6) = ([first prime]^pi(2))*([first prime]^pi(3)) = (2^1)*(2^2) = 8.
From _Gus Wiseman_, May 04 2019: (Start)
For n = 1..20, the prime indices of n together with the prime indices of a(n) are the following:
   1: {} {}
   2: {1} {1}
   3: {2} {1,1}
   4: {1,1} {2}
   5: {3} {1,1,1}
   6: {1,2} {1,1,1}
   7: {4} {1,1,1,1}
   8: {1,1,1} {3}
   9: {2,2} {2,2}
  10: {1,3} {1,1,1,1}
  11: {5} {1,1,1,1,1}
  12: {1,1,2} {1,1,2}
  13: {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,1}
  15: {2,3} {1,1,1,1,1}
  16: {1,1,1,1} {4}
  17: {7} {1,1,1,1,1,1,1}
  18: {1,2,2} {1,2,2}
  19: {8} {1,1,1,1,1,1,1,1}
  20: {1,1,3} {1,1,1,2}
(End)
		

Crossrefs

Programs

  • Maple
    A048767 := proc(n)
        local a,p,e,f;
        a := 1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            e := op(2,f) ;
            a := a*ithprime(e)^numtheory[pi](p) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Nov 08 2012
  • Mathematica
    Table[{p, k} = Transpose@ FactorInteger[n]; Times @@ (Prime[k]^PrimePi[p]), {n, 58}] (* Ivan Neretin, Jun 02 2016 *)
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; e >= 0 :> Prime[e]^PrimePi[p]] &, 65] (* Michael De Vlieger, Apr 25 2017 *)

Extensions

a(1)=1 prepended by Alois P. Heinz, Jul 26 2015

A300061 Heinz numbers of integer partitions of even numbers.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 29, 30, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 53, 55, 57, 61, 62, 63, 64, 66, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 112, 113, 115, 116, 117, 118, 120
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			75 is the Heinz number of (3,3,2), which has even weight, so 75 belongs to the sequence.
Sequence of even-weight partitions begins: () (2) (1,1) (4) (2,2) (3,1) (2,1,1) (6) (1,1,1,1) (8) (4,2) (5,1) (3,3) (2,2,2) (4,1,1).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 0, a(n-1)) while add(numtheory[pi]
          (i[1])*i[2], i=ifactors(k)[2])::odd do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 22 2018
  • Mathematica
    Select[Range[200],EvenQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&]

A351295 Numbers whose multiset of prime factors has no permutation with all distinct run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

First differs from A130092 (non-Wilf partitions) in lacking 216.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      6: (2,1)         46: (9,1)         84: (4,2,1,1)
     10: (3,1)         51: (7,2)         85: (7,3)
     14: (4,1)         55: (5,3)         86: (14,1)
     15: (3,2)         57: (8,2)         87: (10,2)
     21: (4,2)         58: (10,1)        90: (3,2,2,1)
     22: (5,1)         60: (3,2,1,1)     91: (6,4)
     26: (6,1)         62: (11,1)        93: (11,2)
     30: (3,2,1)       65: (6,3)         94: (15,1)
     33: (5,2)         66: (5,2,1)       95: (8,3)
     34: (7,1)         69: (9,2)        100: (3,3,1,1)
     35: (4,3)         70: (4,3,1)      102: (7,2,1)
     36: (2,2,1,1)     74: (12,1)       105: (4,3,2)
     38: (8,1)         77: (5,4)        106: (16,1)
     39: (6,2)         78: (6,2,1)      110: (5,3,1)
     42: (4,2,1)       82: (13,1)       111: (12,2)
For example, the prime indices of 150 are {1,2,3,3}, with permutations and run-lengths (right):
  (3,3,2,1) -> (2,1,1)
  (3,3,1,2) -> (2,1,1)
  (3,2,3,1) -> (1,1,1,1)
  (3,2,1,3) -> (1,1,1,1)
  (3,1,3,2) -> (1,1,1,1)
  (3,1,2,3) -> (1,1,1,1)
  (2,3,3,1) -> (1,2,1)
  (2,3,1,3) -> (1,1,1,1)
  (2,1,3,3) -> (1,1,2)
  (1,3,3,2) -> (1,2,1)
  (1,3,2,3) -> (1,1,1,1)
  (1,2,3,3) -> (1,1,2)
Since none have all distinct run-lengths, 150 is in the sequence.
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351201, counted by A351203 (complement A351204).
These partitions appear to be counted by A351293.
The complement is A351294, apparently counted by A239455.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of distinct run-lengths in binary expansion.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A297770 = number of distinct runs in binary expansion.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A329747 = runs-resistance, counted by A329746.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]=={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A323014 a(1) = 0; a(prime) = 1; otherwise a(n) = 1 + a(A181819(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Except for n = 2, same as A182850. Unlike A182850, the terms of this sequence depend only on the prime signature (A101296, A118914) of the index.

Crossrefs

Positions of 1's are the prime numbers A000040.
Positions of 2's are the proper prime powers A246547.
Positions of 3's are A182853.
Row lengths of A323023.

Programs

  • Mathematica
    dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@FactorInteger[n]]]];
    Array[dep,100]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A323014(n) = if(1==n,0,if(isprime(n),1, 1+A323014(A181819(n)))); \\ Antti Karttunen, Jun 10 2022

Formula

For all n >= 1, a(n) = a(A046523(n)). [See comment] - Antti Karttunen, Jun 10 2022

Extensions

Terms a(88) and beyond from Antti Karttunen, Jun 10 2022

A355739 Number of ways to choose a sequence of all different divisors, one of each prime index of n (with multiplicity).

Original entry on oeis.org

1, 1, 2, 0, 2, 1, 3, 0, 2, 1, 2, 0, 4, 2, 3, 0, 2, 0, 4, 0, 4, 1, 3, 0, 2, 3, 0, 0, 4, 1, 2, 0, 3, 1, 5, 0, 6, 3, 6, 0, 2, 1, 4, 0, 2, 2, 4, 0, 6, 0, 3, 0, 5, 0, 3, 0, 6, 3, 2, 0, 6, 1, 2, 0, 6, 1, 2, 0, 5, 2, 6, 0, 4, 5, 2, 0, 5, 2, 4, 0, 0, 1, 2, 0, 3, 3, 6
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(49) = 6 ways are: (1,2), (1,4), (2,1), (2,4), (4,1), (4,2).
The a(182) = 5 ways are: (1,2,3), (1,2,6), (1,4,2), (1,4,3), (1,4,6).
The a(546) = 2 ways are: (1,2,4,3), (1,2,4,6).
		

Crossrefs

This is the strict version of A355731, firsts A355732.
For relatively prime instead of strict we have A355737, firsts A355738.
Positions of 0's are A355740.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices, positions of 1's A289509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Divisors/@primeMS[n]],UnsameQ@@#&]],{n,100}]

A355741 Number of ways to choose a sequence of prime factors, one of each prime index of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

First differs from A355744 at a(169) = 4, A355744(169) = 3.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1131 are {2,6,10}, and the a(1131) = 4 choices are: {2,2,2}, {2,2,5}, {2,3,2}, {2,3,5}.
		

Crossrefs

Positions of 0's are A299174.
The version for all divisors is A355731, firsts A355732.
Choosing prime-power divisors gives A355742.
Positions of 1's are A355743.
Counting multisets instead of sequences gives A355744.
The weakly increasing case is A355745, all divisors A355735.
A001414 adds up distinct prime factors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@PrimeNu/@primeMS[n],{n,100}]

Formula

Totally multiplicative with a(prime(k)) = A001221(k).
Previous Showing 41-50 of 1730 results. Next