cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A112844 Small-number statistic from the enumeration of domino tilings of a 9-pillow of order n.

Original entry on oeis.org

1, 2, 5, 13, 34, 89, 89, 193, 185, 410, 482, 1444, 2018, 6362, 8461, 19885, 22861, 51125, 59792, 146749, 195749, 529114, 730465, 1907545, 2350177, 5638489, 6692337, 16167545, 20091490, 51762100, 67753160, 178151440, 229118152
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 9-pillow is a generalized Aztec pillow. The 9-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 9 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
Plotting A112844(n+2)/A112844(n) gives an intriguing damped sine curve.

Examples

			The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185. A112844(n)=185.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112842 breaks down as A112843^2 times A112844, where A112844 is not necessarily squarefree.
3-pillows: A112833-A112835; 5-pillows: A112836-A112838; 7-pillows: A112839-A112841.

A112833 Number of domino tilings of a 3-pillow of order n.

Original entry on oeis.org

1, 2, 5, 20, 117, 1024, 13357, 259920, 7539421, 326177280, 21040987113, 2024032315968, 290333133984905, 62102074862600192, 19808204598680574457, 9421371079480456587520, 6682097668647718038428569, 7067102111711681259234263040, 11145503882824383823706372042925
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 3-pillow is also called an Aztec pillow. The 3-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 3 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
a(n)^(1/n^2) tends to 1.2211384384439007690866503099... - Vaclav Kotesovec, May 19 2020

Examples

			The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13.
		

Crossrefs

This sequence breaks down as A112834^2 times A112835, where A112835 is not necessarily squarefree.
5-pillows: A112836-A112838; 7-pillows: A112839-A112841; 9-pillows: A112842-A112844.
Related to A071101 and A071100.

Programs

  • Maple
    with(LinearAlgebra):
    b:= proc(x, y, k) option remember;
          `if`(y>x or y Matrix(n, (i, j)-> b(i-1, i-1, j-1)):
    R:= n-> Matrix(n, (i, j)-> `if`(i+j=n+1, 1, 0)):
    a:= n-> Determinant(P(n)+R(n).(P(n)^(-1)).R(n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 26 2013
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[y>x || yJean-François Alcover, Nov 08 2015, after Alois P. Heinz *)

A112839 Number of domino tilings of a 7-pillow of order n.

Original entry on oeis.org

1, 2, 5, 13, 34, 136, 666, 3577, 23353, 200704, 2062593, 24878084, 373006265, 6917185552, 153624835953, 4155902941554, 138450383756352, 5602635336941568, 274540864716936000, 16486029239132118530, 1209110712606533552257
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 7-pillow is a generalized Aztec pillow. The 7-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 7 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.

Examples

			The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112839 breaks down as A112840^2 times A112841, where A112841 is not necessarily squarefree.
3-pillows: A112833-A112835; 5-pillows: A112836-A112838; 9-pillows: A112842-A112844.

A112842 Number of domino tilings of a 9-pillow of order n.

Original entry on oeis.org

1, 2, 5, 13, 34, 89, 356, 1737, 9065, 49610, 325832, 2795584, 28098632, 310726442, 3877921669, 58896208285, 1083370353616, 22901813128125, 548749450880000, 15471093192996501, 522297110942557556, 20691062026775504896
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 9-pillow is a generalized Aztec pillow. The 9-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 9 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.

Examples

			The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112842 breaks down as A112843^2 times A112844, where A112844 is not necessarily squarefree.
3-pillows: A112833-A112835; 5-pillows: A112836-A112838; 7-pillows: A112839-A112841.

A112841 Small-number statistic from the enumeration of domino tilings of a 7-pillow of order n.

Original entry on oeis.org

1, 2, 5, 13, 34, 34, 74, 73, 193, 256, 793, 1049, 2465, 2857, 6577, 8226, 21348, 28872, 74740, 91970, 222217, 268769, 669265, 852305, 2201945, 2805760, 7000777, 8636081, 21311098, 26588770, 67091170, 85150213
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 7-pillow is a generalized Aztec pillow. The 7-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 7 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
Plotting A112841(n+2)/A112841(n) gives an intriguing damped sine curve.

Examples

			The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193. A112841(n)=193.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112839 breaks down as A112840^2 times A112841, where A112841 is not necessarily squarefree.
3-pillows: A112833-A112835; 5-pillows: A112836-A112838; 9-pillows: A112842-A112844.

A112836 Number of domino tilings of a 5-pillow of order n.

Original entry on oeis.org

1, 2, 5, 13, 52, 261, 1666, 14400, 159250, 2308545, 43718544, 1079620569, 34863330980, 1466458546176, 80646187346132, 5787269582487581, 541901038236234048, 66279540183479379277, 10578427028263503488000
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 5-pillow is a generalized Aztec pillow. The 5-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 5 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.

Examples

			The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112836 can be decomposed as A112837^2 times A112838, where A112838 is not necessarily squarefree.
3-pillows: A112833-A112835; 7-pillows: A112839-A112841; 9-pillows: A112842-A112844.

A112838 Small-number statistic from the enumeration of domino tilings of a 5-pillow of order n.

Original entry on oeis.org

1, 2, 5, 13, 13, 29, 34, 100, 130, 305, 361, 881, 1145, 2906, 3557, 8669, 10693, 26893, 33680, 83360, 102800, 254565, 317165, 790037, 980237, 2428298, 3011265, 7483801, 9301217, 23092857, 28646722, 71093860
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 5-pillow is a generalized Aztec pillow. The 5-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 5 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
Plotting A112838(n+2)/A112838(n) gives an intriguing damped sine curve.

Examples

			The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34. A112838(n)=34.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112833 breaks down as A112834^2 times A112835, where A112835 is not necessarily squarefree.
3-pillows: A112833-A112835; 7-pillows: A112839-A112841; 9-pillows: A112842-A112844.

A071101 Expansion of (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x.

Original entry on oeis.org

5, 16, 45, 130, 377, 1088, 3145, 9090, 26269, 75920, 219413, 634114, 1832625, 5296384, 15306833, 44237570, 127848949, 369490320, 1067846845, 3086134658, 8919094697, 25776662080, 74495936025, 215297250946, 622220603405, 1798250918672, 5197041610021
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2002

Keywords

Comments

Number of tilings of the 2-mod-4 pillow of order n is a perfect square times a(n). [Propp, 1999, p. 272]

Examples

			G.f. = 5 + 16*x + 45*x^2 + 130*x^3 + 377*x^4 + 1088*x^5 + 3145*x^6 + 9090*x^7 + ...
		

References

  • J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).

Crossrefs

Programs

  • GAP
    a:=[5,16,45,130];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2] +2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019
    
  • Maple
    seq(coeff(series((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
  • Mathematica
    Table[Abs[Fibonacci[n+3, 1+I]]^2, {n,0,30}] (* Vladimir Reshetnikov, Oct 05 2016 *)
    CoefficientList[Series[(5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4), {x, 0, 30}], x] (* Stefano Spezia, Sep 12 2018 *)
    LinearRecurrence[{2,2,2,-1},{5,16,45,130},30] (* Harvey P. Dale, Oct 03 2024 *)
  • PARI
    {a(n) = my(m = abs(n+3)); polcoeff( (x - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)};  /* Michael Somos, Dec 15 2011 */
    
  • PARI
    x='x+O('x^33); Vec((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018
    
  • Python
    from math import log
    a0,a1,a2,a3,n = 130,45,16,5,3
    print(0,a3)
    print(1,a2)
    print(2,a1)
    print(3,a0)
    while log(a0)/log(10) < 1000:
        a0,a1,a2,a3,n = 2*(a0+a1+a2)-a3,a0,a1,a2,n+1
        print(n,a0) # A.H.M. Smeets, Sep 12 2018
    
  • Sage
    ((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019

Formula

G.f.: (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
a(-n) = a(-6 + n). a(-1) = 2, a(-2) = 1, a(-3) = 0. a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4). - Michael Somos, Dec 15 2011
A112835(2*n + 3) = a(n).
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018

A112834 Large-number statistic from the enumeration of domino tilings of a 3-pillow of order n.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 19, 76, 263, 1584, 8199, 73272, 566401, 7555072, 87000289, 1730799376, 29728075177, 881736342784, 22583659690665, 998900331837728, 38149790451459859, 2516220411436892160, 143302702816187031875
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 3-pillow is also called an Aztec pillow. The 3-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 3 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.

Examples

			The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13. A112834(4)=3.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112833 breaks down as a(n)^2 times A112835, where A112835 is not necessarily squarefree.
5-pillows: A112836-A112838; 7-pillows: A112839-A112841; 9-pillows: A112842-A112844.

A071100 Expansion of (5 + 3*x + x^2 - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x.

Original entry on oeis.org

5, 13, 37, 109, 313, 905, 2617, 7561, 21853, 63157, 182525, 527509, 1524529, 4405969, 12733489, 36800465, 106355317, 307372573, 888323221, 2567301757, 7419639785, 21443156953, 61971873769, 179102039257, 517614500173, 1495933669445, 4323328543981
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2002

Keywords

Comments

Number of tilings of the 0-mod-4 pillow of order n is a perfect square times a(n). [Propp, 1999, p. 271]

Examples

			G.f. = 5 + 13*x + 37*x^2 + 109*x^3 + 313*x^4 + 905*x^5 + 2617*x^6 + 7561*x^7 + ...
		

References

  • J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).

Crossrefs

Cf. A112835.

Programs

  • GAP
    a:=[5,13,37,109];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
  • Maple
    seq(coeff(series((5+3*x+x^2-x^3)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
  • Mathematica
    CoefficientList[Series[(5 + 3*x + x^2 -x^3)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4), {x, 0, 50}], x] (* Stefano Spezia, Sep 12 2018 *)
    LinearRecurrence[{2,2,2,-1},{5,13,37,109},30] (* Harvey P. Dale, Sep 03 2021 *)
  • PARI
    {a(n) = my(m = n+2); if( m < 0, m = -1 - m); polcoeff( (1 - x + x^2 - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)}; /* Michael Somos, Dec 15 2011 */
    
  • PARI
    x='x+O('x^33); Vec((5+3*x+x^2-x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018
    

Formula

G.f.: (5 + 3*x + x^2 -x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
a(-n) = a(-5 + n). a(-1) = a(-2) = 1. a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4). - Michael Somos, Dec 15 2011
A112835(2*n + 2) = a(n).
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018
Showing 1-10 of 14 results. Next