cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A309584 Numbers k with 2 zeros in a fundamental period of A000129 mod k.

Original entry on oeis.org

3, 6, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 26, 27, 30, 33, 34, 35, 36, 38, 39, 42, 43, 44, 45, 50, 51, 54, 55, 57, 58, 59, 60, 63, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 81, 83, 84, 85, 86, 87, 89, 90, 91, 93, 95, 97, 99, 102, 105, 106, 107, 108, 110
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A214027(k) = 2.
This sequence contains all numbers k such that 4 divides A214028(k). As a consequence, this sequence contains all numbers congruent to 3 modulo 8.
This sequence contains all odd numbers k such that 8 divides A175181(k).

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | this seq | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 100, if(A214027(k)==2, print1(k, ", ")))

A309585 Numbers k with 4 zeros in a fundamental period of A000129 mod k.

Original entry on oeis.org

5, 13, 25, 29, 37, 53, 61, 65, 101, 109, 125, 137, 145, 149, 157, 169, 173, 181, 185, 197, 229, 265, 269, 277, 293, 305, 317, 325, 349, 373, 377, 389, 397, 421, 461, 481, 505, 509, 521, 541, 545, 557, 569, 593, 613, 625, 653, 661, 677, 685, 689, 701, 709
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A214027(k) = 4.
Also numbers k such that A214028(k) is odd.

Crossrefs

Cf. A214028.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | this seq | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 700, if(A214027(k)==4, print1(k, ", ")))

A309586 Primes p with 1 zero in a fundamental period of A006190 mod p.

Original entry on oeis.org

2, 3, 23, 43, 53, 61, 79, 101, 103, 107, 127, 131, 139, 173, 179, 191, 199, 211, 251, 263, 277, 283, 311, 347, 367, 419, 433, 439, 443, 467, 491, 503, 523, 547, 563, 569, 571, 599, 607, 647, 659, 677, 719, 727, 751, 757, 823, 829, 859, 881, 883, 887, 907
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A322906(p) = 1.
For p > 2, p is in this sequence if and only if A175182(p) == 2 (mod 4), and if and only if A322907(p) == 2 (mod 4). For a proof of the equivalence between A322906(p) = 1 and A322907(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 3, 23, 27, 35, 43, 51 modulo 52. This corresponds to case (3) for k = 11 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | this seq
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 900, if(A322906(p)==1, print1(p, ", ")))

A309587 Primes p with 2 zeros in a fundamental period of A006190 mod p.

Original entry on oeis.org

7, 11, 17, 19, 31, 47, 59, 67, 71, 83, 113, 151, 163, 167, 223, 227, 239, 257, 271, 307, 313, 331, 337, 359, 379, 383, 431, 463, 479, 487, 499, 521, 587, 601, 619, 631, 641, 643, 673, 683, 691, 739, 743, 787, 809, 811, 827, 839, 863, 947, 967, 983
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A322906(p) = 2.
For p > 2, p is in this sequence if and only if 8 divides A175182(p), and if and only if 4 divides A322907(p). For a proof of the equivalence between A322906(p) = 2 and 4 dividing A322907(p), see Section 2 of my link below.
This sequence contains all primes congruent to 7, 11, 15, 19, 31, 47 modulo 52. This corresponds to case (2) for k = 11 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | this seq
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 1000, if(A322906(p)==2, print1(p, ", ")))

A309588 Primes p with 4 zeros in a fundamental period of A006190 mod p.

Original entry on oeis.org

5, 13, 29, 37, 41, 73, 89, 97, 109, 137, 149, 157, 181, 193, 197, 229, 233, 241, 269, 281, 293, 317, 349, 353, 373, 389, 397, 401, 409, 421, 449, 457, 461, 509, 541, 557, 577, 593, 613, 617, 653, 661, 701, 709, 733, 761, 769, 773, 797, 821, 853, 857, 877
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A322906(p) = 4.
For p > 2, p is in this sequence if and only if A175182(p) == 4 (mod 8), and if and only if A322907(p) is odd. For a proof of the equivalence between A322906(p) = 4 and A322907(p) being odd, see Section 2 of my link below.
This sequence contains all primes congruent to 5, 21, 33, 37, 41, 45 modulo 52. This corresponds to case (1) for k = 11 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | this seq
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 900, if(A322906(p)==4, print1(p, ", ")))

A309591 Numbers k with 1 zero in a fundamental period of A006190 mod k.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 23, 27, 36, 43, 46, 53, 54, 61, 69, 79, 81, 86, 92, 101, 103, 106, 107, 108, 122, 127, 129, 131, 138, 139, 158, 159, 162, 172, 173, 179, 183, 191, 199, 202, 206, 207, 211, 212, 214, 237, 243, 244, 251, 254, 258, 262, 263, 276
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 1.
The odd numbers k satisfy A175182(k) == 2 (mod 4).

Crossrefs

Cf. A175182.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | this seq
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 300, if(A322906(k)==1, print1(k, ", ")))

A309592 Numbers k with 2 zeros in a fundamental period of A006190 mod k.

Original entry on oeis.org

7, 8, 11, 14, 15, 16, 17, 19, 20, 21, 22, 24, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 42, 44, 45, 47, 48, 49, 51, 52, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75, 76, 77, 78, 80, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 2.
This sequence contains all numbers k such that 4 divides A322907(k). As a consequence, this sequence contains all numbers congruent to 7, 11, 15, 19, 31, 47 modulo 52.
This sequence contains all odd numbers k such that 8 divides A175182(k).

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | this seq
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 100, if(A322906(k)==2, print1(k, ", ")))

A309593 Numbers k with 4 zeros in a fundamental period of A006190 mod k.

Original entry on oeis.org

5, 10, 13, 25, 26, 29, 37, 41, 50, 58, 65, 73, 74, 82, 89, 97, 109, 125, 130, 137, 145, 146, 149, 157, 169, 178, 181, 185, 193, 194, 197, 205, 218, 229, 233, 241, 250, 269, 274, 281, 290, 293, 298, 314, 317, 325, 338, 349, 353, 362, 365, 370, 373, 377
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 4.
Also numbers k such that A214027(k) is odd.

Crossrefs

Cf. A322907.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | this seq
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 400, if(A322906(k)==4, print1(k, ", ")))

A092751 Primes of the form (2*n)!/(n!)^2 - 1.

Original entry on oeis.org

5, 19, 251, 48619, 155117519, 30067266499541039, 6637553085023755473070799, 399608854866744452032002440111, 5717214010165655645594487649236004008072121335004636113518216597999
Offset: 1

Views

Author

Jorge Coveiro, Apr 12 2004

Keywords

Crossrefs

Cf. A075840 = n such that (2*n)!/(n!)^2-1 is prime, A112860 = primes of the form (2*n)!/(n!)^2+1.

Programs

  • Mathematica
    Binomial[2#, # ] - 1 & /@ Select[ Range[150], PrimeQ[(2#)!/#!^2 - 1] &] (* Robert G. Wilson v, Apr 14 2004 *)

Extensions

Corrected and extended by Robert G. Wilson v, Apr 14 2004

A116515 a(n) = the period of the Fibonacci numbers modulo p divided by the smallest m such that p divides Fibonacci(m), where p is the n-th prime.

Original entry on oeis.org

1, 2, 4, 2, 1, 4, 4, 1, 2, 1, 1, 4, 2, 2, 2, 4, 1, 4, 2, 1, 4, 1, 2, 4, 4, 1, 2, 2, 4, 4, 2, 1, 4, 1, 4, 1, 4, 2, 2, 4, 1, 1, 1, 4, 4, 1, 1, 2, 2, 1, 4, 1, 2, 1, 4, 2, 4, 1, 4, 2, 2, 4, 2, 1, 4, 4, 1, 4, 2, 1, 4, 1, 2, 4, 1, 2, 4, 4, 2, 2, 1, 4, 1, 4, 1, 2, 2, 4, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 2, 2, 1
Offset: 1

Views

Author

Nick Krempel, Mar 24 2006

Keywords

Comments

Conditions on p_n mod 4 and mod 5 restrict possible values of a(n). The unknown (?) case is p = 1 mod 4 and (5|p) = 1, equivalently, p = 1 or 9 mod 20, where {1, 2, 4} all occur.
Number of zeros in fundamental period of Fibonacci numbers mod prime(n). [From T. D. Noe, Jan 14 2009]

Examples

			a(4) = 2, as 7 is the 4th prime, the Fibonacci numbers mod 7 have period 16, the first Fibonacci number divisible by 7 is F(8) = 21 = 3*7 and 16 / 8 = 2.
One period of the Fibonacci numbers mod 7 is 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, which has two zeros. Hence a(4)=2. [From _T. D. Noe_, Jan 14 2009]
		

Crossrefs

Cf. A112860, A053027, A053028 (primes producing 1, 2 and 4 zeros) [From T. D. Noe, Jan 14 2009]

Formula

a(n) = A060305(n) / A001602(n). a(n) is always one of {1, 2, 4}.
a(n) = A001176(prime(n)) [From T. D. Noe, Jan 14 2009]
Previous Showing 11-20 of 20 results.