cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A224339 Absolute difference between sum of odd divisors of n^2 and sum of even divisors of n^2.

Original entry on oeis.org

1, 5, 13, 29, 31, 65, 57, 125, 121, 155, 133, 377, 183, 285, 403, 509, 307, 605, 381, 899, 741, 665, 553, 1625, 781, 915, 1093, 1653, 871, 2015, 993, 2045, 1729, 1535, 1767, 3509, 1407, 1905, 2379, 3875, 1723, 3705, 1893, 3857, 3751, 2765, 2257, 6617, 2801, 3905, 3991, 5307
Offset: 1

Views

Author

Paul D. Hanna, Apr 03 2013

Keywords

Comments

Multiplicative because A113184 is.
Logarithmic derivative of A224340.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 + 155*x^10/10 +...
where
exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 + 236*x^8 + 434*x^9 + 805*x^10 +...+ A224340(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    dif[n_]:=Module[{divs=Divisors[n^2],od,ev},od=Total[Select[divs,OddQ]];ev=Total[Select[divs,EvenQ]];Abs[od-ev]]; Array[dif,60] (* Harvey P. Dale, Jul 16 2015 *)
    f[p_, e_] := If[p == 2, 2^(2*e + 1) - 3, (p^(2*e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 01 2022 *)
  • PARI
    {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^2, d, (-1)^d*d))}
    for(n=1,64,print1(a(n),", "))
    
  • PARI
    a(n) = if(n%2, sigma(n^2), 4*sigma(n^2/2) - sigma(n^2)) \\ Andrew Howroyd, Jul 28 2018

Formula

a(n) = (-1)^n * Sum_{d|n^2} (-1)^d * d.
a(n) = A113184(n^2).
a(n) = sigma(n^2) for odd n; a(n) = 4*sigma(n^2/2) - sigma(n^2) for even n. - Andrew Howroyd, Jul 28 2018
Multiplicative with a(p^e) = 2^(2*e+1)-3 if p=2, and (p^(2*e+1)-1)/(p-1) otherwise. - Amiram Eldar, Jul 01 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (9*zeta(3))/(2*Pi^2) = 0.548072... . - Amiram Eldar, Oct 13 2022

A033832 Sum of odd divisors of n < sqrt(n) = sum of even divisors of n < sqrt(n).

Original entry on oeis.org

1, 40, 100, 208, 928, 1044, 3904, 10692, 17444, 29524, 36652, 45980, 87604, 91044, 136808, 158652, 161564, 171028, 187068, 218652, 230044, 260608, 287868, 406812, 438124, 450492, 583110, 665684, 719550, 731850, 736648, 865444, 1045504
Offset: 1

Views

Author

Keywords

Comments

All terms except first one appear to be even. - Michel Marcus, Jul 15 2013

Crossrefs

Programs

  • Mathematica
    aQ[n_] := DivisorSum[n, # * (-1)^# &, # < Sqrt[n] & ] == 0; Select[Range[10^4], aQ] (* Amiram Eldar, Sep 23 2019 *)
  • PARI
    isok(n) = {so = 0; se = 0; fordiv (n, d, if (d < sqrt(n), if (d % 2, so += d, se += d))); return (so == se);} \\ Michel Marcus, Jul 14 2013

Extensions

Prepended a(1)=1, Michel Marcus, Jul 15 2013

A326238 Expansion of Sum_{k>=1} k * x^k * (1 - x^k) / (1 + x^k)^3.

Original entry on oeis.org

1, -2, 12, -20, 30, -24, 56, -104, 117, -60, 132, -240, 182, -112, 360, -464, 306, -234, 380, -600, 672, -264, 552, -1248, 775, -364, 1080, -1120, 870, -720, 992, -1952, 1584, -612, 1680, -2340, 1406, -760, 2184, -3120, 1722, -1344, 1892, -2640, 3510, -1104, 2256
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[k x^k (1 - x^k)/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[n Sum[(-1)^(d + 1) d, {d, Divisors[n]}], {n, 1, 47}]
    f[p_, e_] := p^e*(p^(e+1)-1)/(p-1); f[2, e_] := 2^e*(3-2^(e+1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
  • PARI
    a(n)={n*sumdiv(n, d, (-1)^(d + 1) * d)} \\ Andrew Howroyd, Sep 10 2019

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k^2 * x^k / (1 - x^k)^2.
a(n) = n * Sum_{d|n} (-1)^(d + 1) * d.
a(n) = n * A002129(n).
Multiplicative with a(2^e) = 2^e*(3-2^(e+1)), and a(p^e) = p^e*(p^(e+1)-1)/(p-1) if p > 2. - Amiram Eldar, Dec 05 2022
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*(1-2^(3-s)). - Amiram Eldar, Jan 07 2023

A143336 Expansion of K(k) * (2 * E(k) - K(k)) / (Pi/2)^2 in powers of q where E(k), K(k) are complete elliptic integrals and q = exp(-Pi * K(k') / K(k)).

Original entry on oeis.org

1, -8, -8, -32, -40, -48, -32, -64, -104, -104, -48, -96, -160, -112, -64, -192, -232, -144, -104, -160, -240, -256, -96, -192, -416, -248, -112, -320, -320, -240, -192, -256, -488, -384, -144, -384, -520, -304, -160, -448, -624, -336, -256, -352, -480, -624, -192, -384, -928, -456, -248, -576, -560, -432
Offset: 0

Views

Author

Michael Somos, Aug 09 2008

Keywords

Examples

			G.f. = 1 - 8*q - 8*q^2 - 32*q^3 - 40*q^4 - 48*q^5 - 32*q^6 - 64*q^7 - 104*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -(-1)^n 8 Sum[(-1)^d d, {d, Divisors @ n}]]; (* Michael Somos, Apr 07 2015 *)
    a[ n_] := SeriesCoefficient[ With[{m = InverseEllipticNomeQ[ q]}, EllipticK[ m] (2 EllipticE[ m] - EllipticK[ m]) (2/Pi)^2], {q, 0, n}]; (* Michael Somos, Apr 07 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -(-1)^n * 8 * sumdiv(n, d, (-1)^d * d))};

Formula

The generating function equals 0 when 2 * E(k) = K(k) at q = 0.1076539192... (A072558) the "One-Ninth" constant.
Expansion of (P(q) - 2 * P(q^2) + 4 * P(q^4)) / 3 in powers of q where P() is a Ramanujan Lambert series.
G.f.: 1 - 8 * Sum_{k>0} k * x^k / (1 - (-x)^k) = 1 + 8 * Sum_{k>0} (-x)^k / (1 + (-x)^k)^2.
a(n) = (-1)^n * A122858(n). a(n) = -8 * A113184(n) unless n=0.

A348583 Numbers k such that k | A002129(k).

Original entry on oeis.org

1, 60, 728, 6960, 60512, 97152, 728000, 1900080, 2184000, 4371840, 26522496, 843480000, 23009688000, 46352390400, 93155148800, 279465446400, 701869363200, 938948846080, 1099176108032, 2816846538240
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2021

Keywords

Comments

Equivalently, numbers k such that k | A113184(k).
The corresponding ratios A002129(k)/k are 1, -2, -2, -3, -2, -3, -3, -4, -4, -4, -4, -4, -4, -4, -3, -4, -4, -3, -2, -4, ...
If p is a Mersenne exponent (A000043), and the corresponding Mersenne prime (A000668) M_p = 2^p - 1 is in A005382 or A167917, i.e., 2*M_p - 1 is also a prime, then 2^p*(2^p-1)*(2^(p+1)-3) is a term. The corresponding known terms of this form are 60, 728, 60512, 1099176108032 and 288229001763749888.
If a term k is odd, then A002129(k) = A000203(k) and thus k is a multiply-perfect number. Therefore, the odd perfect numbers, if they exist, are terms of this sequence.

Examples

			60 is a term since A002129(60) = -120 is divisible by 60.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^(e + 1)-3, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], Divisible[s[#], #] &]

Extensions

a(20) from Martin Ehrenstein, Nov 06 2021

A348584 Numbers k such that k | A328258(k).

Original entry on oeis.org

1, 12, 56, 180, 992, 16256, 127400, 441000, 2646000, 67100672, 325458000, 2758909440, 17179738112, 274877382656
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2021

Keywords

Comments

The corresponding ratios A113184(k)/k are 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, ...
If p is a Mersenne exponent (A000043), then 2^p*(2^p-1) (twice an even perfect number) is a term with ratio A328258(k)/k = -1.
If there exists an odd term k, then it is a unitary multiply-perfect number (A327158), since A328258(k) = A034448(k) for an odd k.

Examples

			12 is a term since A328258(12) = -12 is divisible by 12.
		

Crossrefs

The unitary version of A348583.
A139256 is a subsequence.

Programs

  • Mathematica
    f[p_, e_] := 1 - (-1)^p*(p^e); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[3*10^6], Divisible[s[#], #] &]
Previous Showing 11-16 of 16 results.