cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A340675 Exponential of Mangoldt function conjugated by Tek's flip: a(n) = A225546(A014963(A225546(n))).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 16, 2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 16, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 4, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 01 2021

Keywords

Comments

Nonunit squarefree numbers take the value 2, other nonsquares take the value 1, and squares take the square of the value taken by their square root.

Crossrefs

Sequences used in a definition of this sequence: A014963, A048298, A225546, A267116, A297108, A340676.
Positions of 1's: {1} U A340681, 2's: A005117 \ {1}, of 4's: A062503 \ {1}, of 16's: A113849.
Positions of terms > 1: A340682, of terms > 2: A340674.
Sequences used to express relationship between terms of this sequence: A003961, A331590.

Programs

  • PARI
    A340675(n) = if(1==n,n,if(issquarefree(n), 2, if(!issquare(n), 1, A340675(sqrtint(n))^2)));

Formula

a(n) = 2^A048298(A267116(n)).
If A340673(n) = 1, then a(n) = 1, otherwise a(n) = 2^A297108(A340673(n)).
If A340676(n) = 0, then a(n) = 1, otherwise a(n) = 2^(2^(A340676(n)-1)).
If n = s^(2^k), s squarefree >= 2, k >= 0, then a(n) = 2^(2^k), otherwise a(n) = 1.
For n, k > 1, if a(n) = a(k) then a(A331590(n, k)) = a(n), otherwise a(A331590(n, k)) = 1.
a(n^2) = a(n)^2.
a(A003961(n)) = a(n).
a(A051144(n)) = 1.
a(n) = 1 if and only if A331591(n) <> 1, otherwise a(n) = 2^A051903(n).

A335740 Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is not a power of 2.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Peter Munn, Jun 20 2020

Keywords

Comments

Every missing number greater than 2 is a multiple of 4. Every power of 2 is missing. Every positive power of every squarefree number greater than 2 is present.
The defined factorization is unique. Every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on.
Iteratively map m using A000188, until 1 is reached, as A000188^k(m), for some k >= 1. m is in the sequence if and only if the preceding number, A000188^(k-1)(m), is greater than 2. k can be shown to be A299090(m).
The asymptotic density of this sequence is 1 - Sum_{k>=0} (d(2^(k+1)) - d(2^k))/2^(2^(k+1)-1) = 0.78636642806078947931..., where d(k) = 2^(k-1)/((2^k-1)*zeta(k)) is the asymptotic density of odd k-free numbers for k >= 2, and d(1) = 0. - Amiram Eldar, Feb 10 2024

Examples

			6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is not in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is in the sequence.
		

Crossrefs

Complement within A020725 of A335738.
A000188, A299090 are used in a formula defining this sequence.
Powers of squarefree numbers: A005117(1), A144338(1), A062503(2), A113849(4).
Subsequences: A042968\{1,2}, A182853, A268390.
With {1}, numbers in the odd bisection of A336322.

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 100], FixedPointList[s, #] [[-3]] > 2 &] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, n > 1, if(o == 1, e < 1, floor(logint(e, 2)) <= floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024

Formula

{a(n)} = {m : m >= 2 and A000188^(k-1)(m) > 2, where k = A299090(m)}.

A153157 a(n) = A007916(n)^4.

Original entry on oeis.org

16, 81, 625, 1296, 2401, 10000, 14641, 20736, 28561, 38416, 50625, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 456976, 614656, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2560000, 2825761
Offset: 1

Views

Author

Keywords

Comments

2^4=16,3^4=81,4^4=256=2^8 is not in the sequence,5^4=625,6^4=1296,...

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^4
  • Python
    from sympy import mobius, integer_nthroot
    def A153157(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**4 # Chai Wah Wu, Nov 21 2024

Extensions

Edited by Ray Chandler, Dec 22 2008

A157290 Decimal expansion of 105/Pi^4.

Original entry on oeis.org

1, 0, 7, 7, 9, 2, 8, 1, 3, 6, 7, 4, 1, 8, 5, 5, 1, 9, 4, 8, 6, 1, 0, 4, 2, 2, 4, 3, 0, 4, 7, 4, 6, 2, 8, 8, 4, 8, 9, 1, 9, 1, 9, 1, 9, 4, 6, 3, 2, 0, 1, 7, 5, 8, 5, 4, 0, 7, 6, 4, 3, 7, 2, 4, 5, 5, 7, 2, 3, 4, 5, 8, 0, 9, 3, 2, 9, 5, 1, 6, 2, 6, 1, 5, 2, 6, 0, 0, 1, 0, 2, 6, 0, 0, 5, 5, 0, 1, 5, 0, 9, 0, 8, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The Product_{p = primes = A000040} (1+1/p^4), the quartic analog to A082020.

Examples

			1.077928136741855194... = (1+1/2^4)*(1+1/3^4)*(1+1/5^4)*(1+1/7^4)*...
		

References

  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 230.

Crossrefs

Programs

Formula

Equals A013662/A013666 = Product_{i>=1} (1+1/A030514(i)).
Equals Sum_{k>=1} 1/A005117(k)^4 = 1 + Sum_{k>=1} 1/A113849(k). - Amiram Eldar, May 22 2020
Equals 1/A347329. - Hugo Pfoertner, Jul 01 2024

A336595 Numbers whose number of divisors is divisible by 5.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200, 1232
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

The asymptotic density of this sequence is 1 - zeta(5)/zeta(4) = 0.0419426259... (Sathe, 1945).

Examples

			16 is a term since A000005(16) = 5 is divisible by 5.
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 63.

Crossrefs

Programs

  • Maple
    q:= n-> is(irem(numtheory[tau](n), 5)=0):
    select(q, [$1..1300])[];  # Alois P. Heinz, Jul 26 2020
  • Mathematica
    Select[Range[1300], Divisible[DivisorSigma[0, #], 5] &]

Formula

A030514 UNION A030628 \ {1} UNION A030633 UNION A030638 UNION A137488 UNION A137493 UNION A175745 UNION A175749 UNION A175752 UNION A175756 UNION ... - R. J. Mathar, May 05 2023

A340673 If n is of the form s^(2^e), where s is a squarefree number, and e >= 0, then a(n) is the (1+e)-th prime, otherwise a(n) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 5, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 5, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 3, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2021

Keywords

Crossrefs

Positions of 1's: {1} U A340681, of 2's: A005117 \ {1}, of 3's: A062503 \ {1}, of 5's: A113849.
Positions of terms > 1: A340682, of terms > 2: A340674.

Programs

Formula

a(n) = A014963(A225546(n)).
a(n) = A225546(A340675(n)).
a(n) = A008578(1+A340676(n)).
If n is of the form s^(2^e), where s is a squarefree number, and e >= 0, then a(n) = A000040(1+e), otherwise a(n) = 1.

A340676 If n is of the form s^(2^e), where s is a squarefree number, and e >= 0, then a(n) = 1+e, otherwise a(n) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 3, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 3, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Positions of zeros: {1} U A340681, of 1's: A005117 \ {1}, of 2's: A062503 \ {1}, of 3's: A113849.
Positions of nonzero terms: A340682, of terms > 1: A340674.

Programs

  • Mathematica
    a[1] = 0; a[n_] := If[Length[(u = Union[FactorInteger[n][[;; , 2]]])] == 1 && u[[1]] == 2^(e = IntegerExponent[u[[1]], 2]), e + 1, 0]; Array[a, 100] (* Amiram Eldar, Feb 10 2021 *)
  • PARI
    A001511(n) = 1+valuation(n,2);
    A209229(n) = (n && !bitand(n,n-1));
    A104117(n) = (A209229(n)*A001511(n));
    A267116(n) = if(n>1, fold(bitor, factor(n)[, 2]), 0);
    A340676(n) = if(1==n,0,A104117(A267116(n)));

Formula

a(n) = A297109(A225546(n)).
For n > 1, a(n) = A104117(A267116(n)). - Peter Munn, Feb 05 2021

A360906 Numbers with the same number of cubefree divisors and 3-full divisors.

Original entry on oeis.org

1, 16, 81, 384, 625, 640, 896, 1296, 1408, 1664, 2176, 2401, 2432, 2944, 3712, 3968, 4374, 4736, 5248, 5504, 6016, 6784, 7552, 7808, 8576, 9088, 9216, 9344, 10000, 10112, 10624, 10935, 11392, 12416, 12928, 13184, 13696, 13952, 14464, 14641, 15309, 16256, 16768
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2023

Keywords

Comments

Numbers k such that A073184(k) = A190867(k).
Numbers whose largest cubefree divisor (A007948) and cubefull part (A360540) have the same number of divisors (A000005).
If k and m are coprime terms, then k*m is also a term.
The characteristic function of this sequence depends only on prime signature.
1 is the only cubefree (A004709) term.
Includes the 4th powers of squarefree numbers (1 and A113849).
The 4th powers of primes (A030514) are the only terms that are prime powers (A246655).
Numbers of the for m*p^(3*2^k+1), where m is squarefree, p is prime, gcd(m, p) = 1 and omega(m) = k, are all terms. In particular, this sequence includes numbers of the form p^7*q, where p != q are primes (A179664), and numbers of the form p^13*q*r where p, q, and r are distinct primes.
The corresponding numbers of cubefree (or 3-full) divisors are 1, 3, 3, 6, 3, 6, 6, 9, 6, 6, 6, 3, 6, 6, ... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ (Min[#, 3] & /@ (e + 1)) == Times @@ (Max[#, 1] & /@ (e - 1))]; q[1] = True; Select[Range[10^4], q]
  • PARI
    is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, min(e[i] + 1, 3)) == prod(i = 1, #e, max(e[i] - 1, 1)); }

A366307 Powerful numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are powers of 4.

Original entry on oeis.org

1, 16, 81, 625, 1296, 2401, 10000, 14641, 28561, 38416, 50625, 65536, 83521, 130321, 194481, 234256, 279841, 456976, 707281, 810000, 923521, 1048576, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2825761, 3111696, 3418801, 4477456, 4879681, 5308416, 6765201
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2023

Keywords

Comments

Equivalently, powerful numbers that are products of "Fermi-Dirac primes" that are powers of primes with exponents that are powers of 2 with even exponents.
Products of distinct numbers of the form p^(2^(2*k)), where p is prime and k >= 1.
Numbers whose prime factorization has exponents that are the even positive terms of the Moser-de Bruijn sequence (A000695).

Crossrefs

Intersection of A001694 and A366242.
Intersection of A000583 and A366242.
A113849 is a subsequence.

Programs

  • Mathematica
    mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; Select[Range[10^6], # == 1 || AllTrue[FactorInteger[#][[;; , 2]], EvenQ[#1] && mdQ[#1] &] &]
    (* or *)
    seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^4 < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log2[Floor[Log[p, max]]]]; Do[s1 = {1, p^(2^e)}; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {e, 2, emax, 2}], {k, 1, Length[ps]}]; s]; seq[10^7]
  • PARI
    ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1;}
    is(n) = {my(e = factor(n)[,2]); for(i = 1, #e, if(e[i]%2 || !ismd(e[i]), return(0))); 1;}

Formula

a(n) = A366242(n)^4 = A000583(A366242(n)).
Sum_{n>=1} 1/a(n) = Product_{k>=1} zeta(2^(2*k))/zeta(2^(2*k+1)) = 1.07794460966828564964... = zeta(2)/c, where c is the constant defined in A366242.
Previous Showing 11-19 of 19 results.