cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008966 a(n) = 1 if n is squarefree, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
The infinite lower triangular matrix with A008966 on the main diagonal and the rest zeros is the square of triangle A143255. - Gary W. Adamson, Aug 02 2008

Crossrefs

Cf. A005117, A008836 (Dirichlet inverse), A013928 (partial sums).
Parity of A002033.
Cf. A082020 (Dgf at s=2), A157289 (Dgf at s=3), A157290 (Dgf at s=4).

Programs

  • Haskell
    a008966 = abs . a008683
    -- Reinhard Zumkeller, Dec 13 2015, Dec 15 2014, May 27 2012, Jan 25 2012
    
  • Magma
    [ Abs(MoebiusMu(n)) : n in [1..100]];
    
  • Maple
    A008966 := proc(n) if numtheory[issqrfree](n) then 1 ; else 0 ; end if; end proc: # R. J. Mathar, Mar 14 2011
  • Mathematica
    A008966[n_] := Abs[MoebiusMu[n]]; Table[A008966[n], {n, 100}] (* Enrique Pérez Herrero, Apr 15 2010 *)
    Table[If[SquareFreeQ[n],1,0],{n,100}] (* or *) Boole[SquareFreeQ/@ Range[ 100]] (* Harvey P. Dale, Feb 28 2015 *)
  • MuPAD
    func(abs(numlib::moebius(n)), n):
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1+X))[n]
    
  • PARI
    a(n)=issquarefree(n) \\ Michel Marcus, Feb 22 2015
    
  • Python
    from sympy import factorint
    def A008966(n): return int(max(factorint(n).values(),default=1)==1) # Chai Wah Wu, Apr 05 2023

Formula

Dirichlet g.f.: zeta(s)/zeta(2s).
a(n) = abs(mu(n)), where mu is the Moebius function (A008683).
a(n) = 0^(bigomega(n) - omega(n)), where bigomega(n) and omega(n) are the numbers of prime factors of n with and without repetition (A001222, A001221, A046660). - Reinhard Zumkeller, Apr 05 2003
Multiplicative with p^e -> 0^(e - 1), p prime and e > 0. - Reinhard Zumkeller, Jul 15 2003
a(n) = 0^(A046951(n) - 1). - Reinhard Zumkeller, May 20 2007
a(n) = 1 - A107078(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = floor(rad(n)/n), where rad() is A007947. - Enrique Pérez Herrero, Nov 13 2009
A175046(n) = a(n)*A073311(n). - Reinhard Zumkeller, Apr 05 2010
a(n) = floor(A000005(n^2)/A007425(n)). - Enrique Pérez Herrero, Apr 15 2010
a(A005117(n)) = 1; a(A013929(n)) = 0; a(n) = A013928(n + 1) - A013928(n). - Reinhard Zumkeller, Jul 05 2010
a(n) * A112526(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = mu(n) * lambda(n) = A008836(n) * A008683(n). - Enrique Pérez Herrero, Nov 29 2013
a(n) = Sum_{d|n} 2^omega(d)*mu(n/d). - Geoffrey Critzer, Feb 22 2015
a(n) = A085357(A156552(n)). - Antti Karttunen, Mar 06 2017
Limit_{n->oo} (1/n)*Sum_{j=1..n} a(j) = 6/Pi^2. - Andres Cicuttin, Aug 13 2017
a(1) = 1; a(n) = -Sum_{d|n, d < n} (-1)^bigomega(n/d) * a(d). - Ilya Gutkovskiy, Mar 10 2021

Extensions

Deleted an unclear comment. - N. J. A. Sloane, May 30 2021

A030514 a(n) = prime(n)^4.

Original entry on oeis.org

16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
Offset: 1

Views

Author

Keywords

Comments

Numbers with 5 divisors (1, p, p^2, p^3, p^4, where p is the n-th prime). - Alexandre Wajnberg, Jan 15 2006
Subsequence of A036967. - Reinhard Zumkeller, Feb 05 2008
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
The general product formula for even s is: product_{p = A000040} (p^s-1)/(p^s+1) = 2*Bernoulli(2s)/( binomial(2s, s)*Bernoulli^2(s)), where the infinite product is over all primes. Here, with s = 4, product_{n = 1, 2, ...} (a(n)-1)/(a(n)+1) = 6/7. In A030516, where s = 6, the product of the ratios is 691/715. For s = 8, the 8th row in A120458, the corresponding product of ratios is 7234/7293. - R. J. Mathar, Feb 01 2009
Except for the first three terms, all others are congruent to 1 mod 240. - Robert Israel, Aug 29 2014

Crossrefs

Programs

Formula

a(n) = A000040(n)^(5-1) = A000040(n)^4, where 5 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 5. - Alexandre Wajnberg, Jan 15 2006
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(4) = 0.0769931397... (A085964). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(4)/zeta(8) = 105/Pi^4 (A157290).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(4) = 90/Pi^4 (A215267). (End)

Extensions

Description corrected by Eric W. Weisstein

A082020 Decimal expansion of 15/Pi^2.

Original entry on oeis.org

1, 5, 1, 9, 8, 1, 7, 7, 5, 4, 6, 3, 5, 0, 6, 6, 5, 7, 1, 6, 5, 8, 1, 9, 1, 9, 4, 8, 1, 4, 5, 9, 1, 4, 5, 8, 3, 5, 6, 5, 3, 8, 1, 6, 2, 0, 0, 8, 3, 6, 9, 8, 2, 3, 2, 6, 8, 4, 1, 3, 5, 4, 7, 8, 4, 1, 2, 5, 9, 6, 8, 1, 4, 4, 3, 3, 5, 3, 1, 6, 1, 7, 8, 6, 8, 1, 3, 9, 1, 0, 8, 8, 8, 4, 3, 2, 7, 5, 6
Offset: 1

Views

Author

N. J. A. Sloane, May 09 2003

Keywords

Comments

3/(2*Pi^2) (the same decimal expansion with an offset 0) is the probability that the greatest common divisor of two numbers selected at random is 2 (Christopher, 1956). - Amiram Eldar, May 23 2020
Sum of 1/n^2 over all squarefree n, see Penn link. - Charles R Greathouse IV, Jan 01 2022
Equals the asymptotic mean of the abundancy index of the cubefree numbers (A004709) (Jakimczuk and Lalín, 2022). - Amiram Eldar, May 12 2023

Examples

			1.51981775463506657...
		

Crossrefs

Programs

Formula

Product_{n >= 1} (1+1/prime(n)^2) = 15/Pi^2 (Ramanujan).
Equals zeta(2)/zeta(4) = A013661/A013662 = Sum_{n>=1} mu(n)^2/n^2 = Sum_{n>=1} |mu(n)|/n^2 . - Enrique Pérez Herrero, Jan 15 2012
Equals Sum_{n>=1} 1/A005117(n)^2 . - Enrique Pérez Herrero, Mar 30 2012
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} psi(k)/k, where psi(k) is the Dedekind psi function (A001615). - Amiram Eldar, May 12 2019.
Equals Sum_{k>=1} A007434(k)/k^4. - Amiram Eldar, Jan 25 2024

A157294 Decimal expansion of 1575/Pi^6.

Original entry on oeis.org

1, 6, 3, 8, 2, 5, 4, 3, 2, 0, 4, 4, 0, 9, 6, 7, 3, 6, 6, 3, 4, 1, 4, 9, 4, 2, 7, 4, 9, 8, 9, 8, 7, 3, 5, 5, 4, 9, 1, 8, 7, 0, 2, 5, 2, 6, 6, 4, 4, 3, 4, 4, 7, 1, 8, 0, 7, 2, 9, 0, 0, 6, 7, 4, 8, 9, 2, 5, 0, 4, 2, 3, 5, 5, 7, 4, 4, 7, 9, 0, 4, 1, 3, 4, 8, 3, 1, 5, 9, 2, 4, 6, 3, 0, 4, 9, 2, 3, 6, 9, 2, 5, 6, 9, 1
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

Equals the asymptotic mean of the abundancy index of the 7-free numbers (numbers that are not divisible by a 7th power other than 1) (Jakimczuk and Lalín, 2022). - Amiram Eldar, May 12 2023

Examples

			1.63825432044096736634149427498... = (1+1/2^2+1/2^4+1/2^6)*(1+1/3^2+1/3^4+1/3^6)*(1+1/5^2+1/5^4+1/5^6)*(1+1/7^2+1/7^4+1/7^6)*...
		

Crossrefs

Programs

Formula

Equals Product_{p = primes = A000040} (1+1/p^2+1/p^4+1/p^6).
Equals A013661/A013666 = A082020*A157290 = Product_{i>=1} (1+1/A001248(i)+1/A030514(i)+1/A030516(i)) = 1575*A092746.

A269404 Decimal expansion of Product_{k >= 1} (1 + 1/prime(k)^6).

Original entry on oeis.org

1, 0, 1, 7, 0, 9, 2, 7, 6, 9, 1, 3, 0, 4, 9, 9, 2, 7, 6, 6, 4, 3, 2, 7, 2, 1, 3, 3, 0, 9, 7, 9, 0, 9, 9, 2, 0, 4, 9, 2, 2, 1, 9, 0, 7, 9, 4, 9, 4, 1, 0, 1, 1, 3, 4, 6, 6, 4, 6, 5, 1, 7, 9, 3, 8, 1, 8, 9, 3, 5, 3, 3, 5, 8, 3, 4, 2, 2, 7, 9, 4, 3, 1, 8, 1, 5, 1, 5, 9, 6, 4, 7, 8, 5, 0, 6, 6, 8, 9, 7, 8, 4, 5, 4, 6, 5, 1, 0, 6, 4, 0, 2, 6, 1, 3, 3, 6, 9, 3, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 25 2016

Keywords

Comments

More generally, Product_{k >= 1} (1 + 1/prime(k)^m) = zeta(m)/zeta(2*m), where zeta(m) is the Riemann zeta function.

Examples

			1.0170927691304992766432721330979099204922190794941...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6]/Zeta[12], 10, 120][[1]]
    RealDigits[675675/(691 Pi^6), 10, 120][[1]]
  • PARI
    zeta(6)/zeta(12) \\ Amiram Eldar, Jun 11 2023

Formula

Equals zeta(6)/zeta(12).
Equals 675675/(691*Pi^6).
Equals Sum_{k>=1} 1/A005117(k)^6 = 1 + Sum_{k>=1} 1/A113851(k). - Amiram Eldar, Jun 27 2020
Showing 1-5 of 5 results.