cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A001620 Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma.

Original entry on oeis.org

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, 3, 5, 9, 8, 8, 0, 5, 7, 6, 7, 2, 3, 4, 8, 8, 4, 8, 6, 7, 7, 2, 6, 7, 7, 7, 6, 6, 4, 6, 7, 0, 9, 3, 6, 9, 4, 7, 0, 6, 3, 2, 9, 1, 7, 4, 6, 7, 4, 9
Offset: 0

Views

Author

Keywords

Comments

Yee (2010) computed 29844489545 decimal digits of gamma.
Decimal expansion of 0th Stieltjes constant. - Paul Muljadi, Aug 24 2010
The value of Euler's constant is close to (18/Pi^2)*Sum_{n>=0} 1/4^(2^n) = 0.5770836328... = (6/5) * A082020 * A078585. - Arkadiusz Wesolowski, Mar 27 2012

Examples

			0.577215664901532860606512090082402431042...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 259-262.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 28-40, 166, 365.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.
  • B. Gugger, Problèmes corrigés de Mathématiques posés aux concours des Ecoles Militaires, Ecole de l'Air, 1992, option MP, 1ère épreuve, Ellipses, 1993, pp. 167-184.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.3 Infinite Series, pp. 273-274.
  • J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • J.-M. Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, Exercice 4.3.14, pages 371 and 387, 1997.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 166.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:5 at page 13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1990.

Crossrefs

Cf. A002852 (continued fraction).
Cf. A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A231095 (power tower using this constant).
Denote the generalized Euler constants, also called Stieltjes constants, by Sti(n).
Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816, Sti(1) = A082633 (cf. A262382/A262383), Sti(3/2) = A301817,
Sti(2) = A086279 (cf. A262384/A262385), Sti(3) = A086280 (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Magma
    EulerGamma(250); // G. C. Greubel, Aug 21 2018
    
  • Maple
    Digits := 100; evalf(gamma);
  • Mathematica
    RealDigits[ EulerGamma, 10, 105][[1]] (* Robert G. Wilson v, Nov 01 2004 *)
    (1/2) N[Sum[PolyGamma[0, 1/2 + 2^k] - PolyGamma[0, 2^k], {k, 0, Infinity }], 30] (* Dimitri Papadopoulos, Nov 30 2016 *)
  • PARI
    default(realprecision, 20080); x=Euler; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b001620.txt", n, " ", d));  \\ Harry J. Smith, Apr 15 2009
    
  • Python
    from sympy import S
    def aupton(digs): return [int(d) for d in str(S.EulerGamma.n(digs+2))[2:-2]]
    print(aupton(99)) # Michael S. Branicky, Nov 22 2021

Formula

Limit_{n->oo} (1 + 1/2 + ... + 1/n - log(n)) (definition).
Sum_{n>=1} (1/n - log(1 + 1/n)), since log(1 + 1/1) + ... + log(1 + 1/n) telescopes to log(n+1) and lim_{n->infinity} (log(n+1) - log(n)) = 0.
Integral_{x=0..1} -log(log(1/x)). - Robert G. Wilson v, Jan 04 2006
Integral_{x=0..1,y=0..1} (x-1)/((1-x*y)*log(x*y)). - (see Sondow 2005)
Integral_{x=0..oo} -log(x)*exp(-x). - Jean-François Alcover, Mar 22 2013
Integral_{x=0..1} (1 - exp(-x) - exp(-1/x))/x. - Jean-François Alcover, Apr 11 2013
Equals the lim_{n->oo} fractional part of zeta(1+1/n). The corresponding fractional part for x->1 from below, using n-1/n, is -(1-a(n)). The fractional part found in this way for the first derivative of Zeta as x->1 is A252898. - Richard R. Forberg, Dec 24 2014
Limit_{x->1} (Zeta(x)-1/(x-1)) from Whittaker and Watson. 1990. - Richard R. Forberg, Dec 30 2014
exp(gamma) = lim_{i->oo} exp(H(i)) - exp(H(i-1)), where H(i) = i-th Harmonic number. For a given n this converges faster than the standard definition, and two above, after taking the logarithm (e.g., 13 digits vs. 6 digits at n=3000000 or x=1+1/3000000). - Richard R. Forberg, Jan 08 2015
Limit_{n->oo} (1/2) Sum_{j>=1} Sum_{k=1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n) (k + j*n))). - Dimitri Papadopoulos, Jan 13 2016
Equals 25/27 minus lim_{x->oo} 2^(x+1)/3 - (22/27)*(4/3)^x - Zeta(Sum_{i>=1} (H_i/i^x)), letting H_i denote the i-th harmonic number. - John M. Campbell, Jan 29 2016
Limit_{x->0} -B'(x), where B(x) = -x zeta(1-x) is the "Bernoulli function". - Jean-François Alcover, May 20 2016
Sum_{k>=0} (1/2)(digamma(1/2+2^k) - digamma(2^k)) where digamma(x) = d/dx log(Gamma(x)). - Dimitri Papadopoulos, Nov 14 2016
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma = -Pi*Integral_{0..oo} a/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = -(Pi/(n+1))* Integral_{0..oo} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k) *a^(n-2*k). - Peter Luschny, Apr 19 2018
Limit_{s->0} (Zeta'(1-s)*s - Zeta(1-s)) / (Zeta(1-s)*s). - Peter Luschny, Jun 18 2018
log(2) * (gamma - (1/2) * log(2)) = -Sum_{v >= 1} (1/2^(v+1)) * (Delta^v (log(w)/w))|{w=1}, where Delta(f(w)) = f(w) - f(w + 1) (forward difference). [This is a formula from Lerch (1897).] - _Petros Hadjicostas, Jul 21 2019
From Amiram Eldar, Jul 05 2020: (Start)
Equals Integral_{x=1..oo} (1/floor(x) - 1/x) dx.
Equals Integral_{x=0..1} (1/(1-x) + 1/log(x)) dx = Integral_{x=0..1} (1/x + 1/log(1-x)) dx.
Equals -Integral_{-oo..oo} x*exp(x-exp(x)) dx.
Equals Sum_{k>=1} (-1)^k * floor(log_2(k))/k.
Equals (-1/2) * Sum_{k>=1} (Lambda(k)-1)/k, where Lambda is the Mangoldt function. (End)
Equals Integral_{0..1} -1/LambertW(-1,-x*exp(-x)) dx = 1 + Integral_{0..1} LambertW(-1/x*exp(-1/x)) dx. - Gleb Koloskov, Jun 12 2021
Equals Sum_{k>=2} (-1)^k * zeta(k)/k. - Vaclav Kotesovec, Jun 19 2021
Equals lim_{x->oo} log(x) - Sum_{p prime <= x} log(p)/(p-1). - Amiram Eldar, Jun 29 2021
Limit_{n->oo} (2*HarmonicNumber(n) - HarmonicNumber(n^2)). After answer by Eric Naslund on Mathematics Stack Exchange, on Jun 21 2011. - Mats Granvik, Jul 19 2021
Equals Integral_{x=0..oo} ( exp(-x) * (1/(1-exp(-x)) - 1/x) ) dx (see Gugger or Monier). - Bernard Schott, Nov 21 2021
Equals 1/2 + Limit_{s->1} (Zeta(s) + Zeta(1/s))/2. - Thomas Ordowski, Jan 12 2023
Equals Sum_{j>=2} Sum_{k>=2} ((k-1)/(k*j^k)). - Mike Tryczak, Apr 06 2023
From Stefano Spezia, Oct 27 2024: (Start)
Equals Sum_{n>=1} n*(zeta(n+1) - 1)/(n + 1) [Euler] (see Finch at p. 30).
Equals lim_{n->oo} Sum_{prime p<=n} log(p/(p - 1)) - log(log(n)) (see Finch at p. 31). (End)
Equals lim_{s->1} zeta(s) - zeta(s)^2/zeta(2*s - 1)/2. - Mats Granvik, Jul 07 2025

A001248 Squares of primes.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1

Views

Author

Keywords

Comments

Also 4, together with numbers n such that Sum_{d|n}(-1)^d = -A048272(n) = -3. - Benoit Cloitre, Apr 14 2002
Also, all solutions to the equation sigma(x) + phi(x) = 2x + 1. - Farideh Firoozbakht, Feb 02 2005
Unique numbers having 3 divisors (1, their square root, themselves). - Alexandre Wajnberg, Jan 15 2006
Smallest (or first) new number deleted at the n-th step in an Eratosthenes sieve. - Lekraj Beedassy, Aug 17 2006
Subsequence of semiprimes A001358. - Lekraj Beedassy, Sep 06 2006
Integers having only 1 factor other than 1 and the number itself. Every number in the sequence is a multiple of 1 factor other than 1 and the number itself. 4 : 2 is the only factor other than 1 and 4; 9 : 3 is the only factor other than 1 and 9; and so on. - Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 23 2007
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
There are 2 Abelian groups of order p^2 (C_p^2 and C_p x C_p) and no non-Abelian group. - Franz Vrabec, Sep 11 2008
Also numbers n such that phi(n) = n - sqrt(n). - Michel Lagneau, May 25 2012
For n > 1, n is the sum of numbers from A006254(n-1) to A168565(n-1). - Vicente Izquierdo Gomez, Dec 01 2012
A078898(a(n)) = 2. - Reinhard Zumkeller, Apr 06 2015
Let r(n) = (a(n) - 1)/(a(n) + 1); then Product_{n>=1} r(n) = (3/5) * (4/5) * (12/13) * (24/25) * (60/61) * ... = 2/5. - Dimitris Valianatos, Feb 26 2019
Numbers k such that A051709(k) = 1. - Jianing Song, Jun 27 2021

Crossrefs

Programs

Formula

n such that A062799(n) = 2. - Benoit Cloitre, Apr 06 2002
A000005(a(n)^(k-1)) = A005408(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
a(n) = A000040(n)^(3-1)=A000040(n)^2, where 3 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 3 or A002033(a(n)) = 2. - Juri-Stepan Gerasimov, Oct 10 2009
A033273(a(n)) = 3. - Juri-Stepan Gerasimov, Dec 07 2009
For n > 2: (a(n) + 17) mod 12 = 6. - Reinhard Zumkeller, May 12 2010
A192134(A095874(a(n))) = A005722(n) + 1. - Reinhard Zumkeller, Jun 26 2011
For n > 2: a(n) = 1 (mod 24). - Zak Seidov, Dec 07 2011
A211110(a(n)) = 2. - Reinhard Zumkeller, Apr 02 2012
a(n) = A087112(n,n). - Reinhard Zumkeller, Nov 25 2012
a(n) = prime(n)^2. - Jon E. Schoenfield, Mar 29 2015
Product_{n>=1} a(n)/(a(n)-1) = Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=1} 1/a(n) = P(2) = 0.4522474200... (A085548). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(4) = 15/Pi^2 (A082020).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(2) = 6/Pi^2 (A059956). (End)

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A008966 a(n) = 1 if n is squarefree, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
The infinite lower triangular matrix with A008966 on the main diagonal and the rest zeros is the square of triangle A143255. - Gary W. Adamson, Aug 02 2008

Crossrefs

Cf. A005117, A008836 (Dirichlet inverse), A013928 (partial sums).
Parity of A002033.
Cf. A082020 (Dgf at s=2), A157289 (Dgf at s=3), A157290 (Dgf at s=4).

Programs

  • Haskell
    a008966 = abs . a008683
    -- Reinhard Zumkeller, Dec 13 2015, Dec 15 2014, May 27 2012, Jan 25 2012
    
  • Magma
    [ Abs(MoebiusMu(n)) : n in [1..100]];
    
  • Maple
    A008966 := proc(n) if numtheory[issqrfree](n) then 1 ; else 0 ; end if; end proc: # R. J. Mathar, Mar 14 2011
  • Mathematica
    A008966[n_] := Abs[MoebiusMu[n]]; Table[A008966[n], {n, 100}] (* Enrique Pérez Herrero, Apr 15 2010 *)
    Table[If[SquareFreeQ[n],1,0],{n,100}] (* or *) Boole[SquareFreeQ/@ Range[ 100]] (* Harvey P. Dale, Feb 28 2015 *)
  • MuPAD
    func(abs(numlib::moebius(n)), n):
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1+X))[n]
    
  • PARI
    a(n)=issquarefree(n) \\ Michel Marcus, Feb 22 2015
    
  • Python
    from sympy import factorint
    def A008966(n): return int(max(factorint(n).values(),default=1)==1) # Chai Wah Wu, Apr 05 2023

Formula

Dirichlet g.f.: zeta(s)/zeta(2s).
a(n) = abs(mu(n)), where mu is the Moebius function (A008683).
a(n) = 0^(bigomega(n) - omega(n)), where bigomega(n) and omega(n) are the numbers of prime factors of n with and without repetition (A001222, A001221, A046660). - Reinhard Zumkeller, Apr 05 2003
Multiplicative with p^e -> 0^(e - 1), p prime and e > 0. - Reinhard Zumkeller, Jul 15 2003
a(n) = 0^(A046951(n) - 1). - Reinhard Zumkeller, May 20 2007
a(n) = 1 - A107078(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = floor(rad(n)/n), where rad() is A007947. - Enrique Pérez Herrero, Nov 13 2009
A175046(n) = a(n)*A073311(n). - Reinhard Zumkeller, Apr 05 2010
a(n) = floor(A000005(n^2)/A007425(n)). - Enrique Pérez Herrero, Apr 15 2010
a(A005117(n)) = 1; a(A013929(n)) = 0; a(n) = A013928(n + 1) - A013928(n). - Reinhard Zumkeller, Jul 05 2010
a(n) * A112526(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = mu(n) * lambda(n) = A008836(n) * A008683(n). - Enrique Pérez Herrero, Nov 29 2013
a(n) = Sum_{d|n} 2^omega(d)*mu(n/d). - Geoffrey Critzer, Feb 22 2015
a(n) = A085357(A156552(n)). - Antti Karttunen, Mar 06 2017
Limit_{n->oo} (1/n)*Sum_{j=1..n} a(j) = 6/Pi^2. - Andres Cicuttin, Aug 13 2017
a(1) = 1; a(n) = -Sum_{d|n, d < n} (-1)^bigomega(n/d) * a(d). - Ilya Gutkovskiy, Mar 10 2021

Extensions

Deleted an unclear comment. - N. J. A. Sloane, May 30 2021

A062503 Squarefree numbers squared.

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476
Offset: 1

Views

Author

Jason Earls, Jul 09 2001

Keywords

Comments

Also, except for the initial term, numbers whose prime factors are squared. - Cino Hilliard, Jan 25 2006
Also cubefree numbers that are squares. - Gionata Neri, May 08 2016
All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (term of this sequence), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on. - Peter Munn, Mar 12 2020
Powerful numbers (A001694) all of whose nonunitary divisors are not powerful (A052485). - Amiram Eldar, May 13 2023

Crossrefs

Characteristic function is A227291.
Other powers of squarefree numbers: A005117(1), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7), A072774(all).
Cf. A001248 (a subsequence).
A329332 column 2 in ascending order.

Programs

  • Haskell
    a062503 = a000290 . a005117  -- Reinhard Zumkeller, Jul 07 2013
    
  • Mathematica
    Select[Range[100], SquareFreeQ]^2
  • PARI
    je=[]; for(n=1,200, if(issquarefree(n),je=concat(je,n^2),)); je
    
  • PARI
    n=0; for (m=1, 10^5, if(issquarefree(m), write("b062503.txt", n++, " ", m^2); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009
    
  • PARI
    is(n)=issquare(n,&n) && issquarefree(n) \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A062503(n):
        def f(x): return n-1+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2 # Chai Wah Wu, Aug 19 2024

Formula

Numbers k such that Sum_{d|k} mu(d)*mu(k/d) = 1. - Benoit Cloitre, Mar 03 2004
a(n) = A000290(A005117(n)); A227291(a(n)) = 1. - Reinhard Zumkeller, Jul 07 2013
A000290 \ A062320. - R. J. Mathar, Jul 27 2013
a(n) ~ (Pi^4/36) * n^2. - Charles R Greathouse IV, Nov 24 2015
a(n) = A046692(a(n))^2. - Torlach Rush, Jan 05 2019
For all k in the sequence, Omega(k) = 2*omega(k). - Wesley Ivan Hurt, Apr 30 2020
Sum_{n>=1} 1/a(n) = zeta(2)/zeta(4) = 15/Pi^2 (A082020). - Amiram Eldar, May 22 2020

A034683 Unitary abundant numbers: numbers k such that usigma(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834
Offset: 1

Views

Author

Keywords

Comments

If a term n in the sequence ends in neither 0 nor 5, then 10*n is also in the sequence. - Lekraj Beedassy, Jun 11 2004
The lower asymptotic density of this sequence is larger than 1/18 = 0.0555... which is the density of its subsequence of numbers of the form 6*m where gcd(m, 6) = 1 and m > 1. Numerically, based on counts of terms below 10^n (A302993), it seems that this sequence has an asymptotic density which equals to about 0.070034... - Amiram Eldar, Feb 13 2021
The asymptotic density of this sequence is in the interval (0.0674, 0.1055) (Wall, 1970). - Amiram Eldar, Apr 18 2024
All the terms are nonpowerful numbers (A052485). For powerful numbers (A001694) k, usigma(k)/k < 15/Pi^2 = 1.519817... (A082020; the record values are attained at the squares of primorials, A061742). - Amiram Eldar, Jul 20 2024

References

  • C. Sung, Mathematical Buds, "Unitary Divisors", Chap. V, pp. 42-67, Ed. H. D. Ruderman, Mu Alpha Theta OK 1978.

Crossrefs

Subsequence of A005101.

Programs

  • Maple
    isA034683 := proc(n)
        is(A034448(n) > 2*n) ;
    end proc:
    for n from 1 do
        if isA034683(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    Select[Range[1000], usigma[#] > 2#&] (* Jean-François Alcover, Mar 23 2020, after Giovanni Resta in A034448 *)
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]) > 2*n;} \\ Amiram Eldar, Apr 18 2024

A104141 Decimal expansion of 3/Pi^2.

Original entry on oeis.org

3, 0, 3, 9, 6, 3, 5, 5, 0, 9, 2, 7, 0, 1, 3, 3, 1, 4, 3, 3, 1, 6, 3, 8, 3, 8, 9, 6, 2, 9, 1, 8, 2, 9, 1, 6, 7, 1, 3, 0, 7, 6, 3, 2, 4, 0, 1, 6, 7, 3, 9, 6, 4, 6, 5, 3, 6, 8, 2, 7, 0, 9, 5, 6, 8, 2, 5, 1, 9, 3, 6, 2, 8, 8, 6, 7, 0, 6, 3, 2, 3, 5, 7, 3, 6, 2, 7, 8, 2, 1, 7, 7, 6, 8, 6, 5, 5, 1, 2, 8
Offset: 0

Views

Author

Lekraj Beedassy, Mar 07 2005

Keywords

Comments

3/Pi^2 is the limit of (Sum_{k=1..n} phi(k))/n^2, where phi(k) is Euler's totient A000010(k), i.e., of A002088(n)/A000290(n) as n tends to infinity.
The previous comment in the context of Farey series means that the length of the n-th Farey series can be approximated by multiplying this constant by n^2, "and that the approximation gets proportionally better as n gets larger", according to Conway and Guy. - Alonso del Arte, May 28 2011
The asymptotic density of the sequences of squarefree numbers with even number of prime factors (A030229), odd number of prime factors (A030059), and coprime to 6 (A276378). - Amiram Eldar, May 22 2020

Examples

			3/Pi^2 = 0.303963550927013314331638389629...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, p. 156.
  • L. E. Dickson, History of the Theory of Numbers, Vol. I pp. 126 Chelsea NY 1966.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 184.

Crossrefs

Programs

Formula

Equals Sum_{n>=1} 1/A039956(n)^2. - Amiram Eldar, May 22 2020
From Terry D. Grant, Oct 31 2020: (Start)
Equals (-1)*zeta(0)/zeta(2).
Equals 1/(zeta(2)/2).
Equals 1/A195055.
Equals (1/2)*Sum_{k>=1} mu(k)/k^2. (End)
From Hugo Pfoertner, Apr 23 2024: (Start)
Equals A059956/2.
Equals A082020/5. (End)

Extensions

More terms from Ryan Propper, Aug 04 2005

A323308 The number of exponential semiproper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 10 2019

Keywords

Comments

An exponential semiproper divisor of n is a divisor d such that rad(d) = rad(n) and gcd(d/rad(n), n/d) = 1, where rad(n) is the largest squarefree divisor of n (A007947).
a(n) is also the number of divisors of n that are squares of squarefree numbers (A062503). - Amiram Eldar, Oct 08 2022
a(n) is also the number of unitary divisors of n that are powerful (A001694). - Amiram Eldar, Feb 18 2023
The smallest integer that has exactly 2^n exponential semiproper divisors is A061742(n). - Bernard Schott, Feb 20 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, 1, 2]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = min(f[k,2], 2); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jan 11 2019

Formula

a(n) = A034444(n/A007947(n)).
Multiplicative with a(p^e) = 1 for e = 1 and 2 otherwise.
Asymptotic mean: Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 15/Pi^2 = 1.5198177546... (A082020). - Amiram Eldar, Nov 08 2020
a(n) = Sum_{d^2|n} mu(d)^2. - Wesley Ivan Hurt, Feb 13 2022
Dirichlet g.f.: zeta(s) * zeta(2*s) / zeta(4*s). - Werner Schulte, Dec 29 2022
a(n) = A034444(A000188(n)) = A034444(A008833(n)) (the number of unitary divisors of the largest square dividing n). - Amiram Eldar, Sep 03 2023
a(n) = A034444(A057521(n)) (the number of unitary divisors of the powerful part of n). - Amiram Eldar, Oct 03 2023

A182448 Decimal expansion of Pi^2/15.

Original entry on oeis.org

6, 5, 7, 9, 7, 3, 6, 2, 6, 7, 3, 9, 2, 9, 0, 5, 7, 4, 5, 8, 8, 9, 6, 6, 0, 6, 6, 6, 5, 8, 4, 1, 0, 0, 7, 5, 6, 8, 7, 5, 7, 9, 9, 6, 0, 4, 8, 2, 7, 1, 9, 3, 7, 5, 0, 9, 4, 2, 2, 3, 2, 9, 1, 7, 4, 8, 0, 0, 2, 9, 8, 8, 1, 6, 1, 2, 8, 0, 3, 4, 9, 5, 3, 3, 4, 5, 1, 5, 6, 0, 2, 4, 7, 9, 0, 3, 4, 8, 2, 1, 2, 1, 6, 0, 1
Offset: 0

Views

Author

Mats Granvik, Apr 29 2012

Keywords

Examples

			0.65797362673929...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n + 0)^2 - 1/(n + 1)^2 + 1/(n + 2)^2 - 1/(n + 3)^2 - 4/(n + 4)^2 - 1/(n + 5)^2 + 1/(n + 6)^2 - 1/(n + 7)^2 + 1/(n + 8)^2 + 4/(n + 9)^2, {n, 1, Infinity, 10}], 90]][[1]]
    RealDigits[N[Sum[LiouvilleLambda[n]/n^2, {n, 1, Infinity}], 90]][[1]]
    RealDigits[Pi^2/15,10,120][[1]] (* Harvey P. Dale, May 28 2017 *)
  • PARI
    Pi^2/15 \\ Michel Marcus, Oct 21 2014

Formula

See Mathematica code.
Equals Gamma(4)*zeta(4)/Pi^2 = zeta(4)/zeta(2) = A013662/A013661 = Product_{p prime} (p^2/(p^2+1)). - Stanislav Sykora, Oct 21 2014
Equals (1/10) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/3)^2 - 1/(n + 2/3)^2 ). - Peter Bala, Oct 31 2019
Equals Sum_{k>=1} A008836(k)/k^2. - Amiram Eldar, Jun 23 2020
Equals (1/10) * Sum_{k>=1} (5*t(k-1) + 3*t(k))/k^2, where t(k) = A010060(k) (Tóth, 2022). - Amiram Eldar, Feb 04 2024
Equals 3/5 + (1/5) * Sum_{n>=1} 1/(n^2*(n+1)^2). - Davide Rotondo, May 28 2025
Equals 1/A082020 = A164102/30 = A195055/5. - Hugo Pfoertner, May 28 2025

Extensions

Offset corrected and more terms added by Rick L. Shepherd, Jan 08 2014

A157289 Decimal expansion of Zeta(3)/Zeta(6).

Original entry on oeis.org

1, 1, 8, 1, 5, 6, 4, 9, 4, 9, 0, 1, 0, 2, 5, 6, 9, 1, 2, 5, 6, 9, 3, 9, 9, 7, 3, 4, 1, 6, 0, 4, 5, 4, 2, 6, 0, 5, 4, 7, 0, 2, 3, 2, 6, 0, 7, 6, 8, 6, 8, 2, 6, 1, 0, 2, 8, 3, 0, 4, 3, 1, 4, 8, 8, 7, 7, 2, 0, 5, 4, 2, 1, 1, 1, 0, 3, 1, 8, 8, 3, 9, 9, 0, 0, 2, 9, 9, 4, 8, 7, 1, 1, 8, 4, 4, 4, 9, 2, 7, 0, 1, 1, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The Product_{p = primes = A000040} (1+1/p^3), the cubic analog to A082020.

Examples

			1.181564949010256912569399734... = (1+1/2^3)*(1+1/3^3)*(1+1/5^3)*(1+1/7^3)*...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(3)/Zeta(6)) ;
  • Mathematica
    RealDigits[Zeta[3]/Zeta[6],10,120][[1]] (* Harvey P. Dale, Jul 23 2016 *)

Formula

Equals A002117/A013664 = Product_{i} (1+1/A030078(i)).
Equals Sum_{k>=1} 1/A062838(k) = Sum_{k>=1} 1/A005117(k)^3. - Amiram Eldar, May 22 2020
Showing 1-10 of 46 results. Next