cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A008966 a(n) = 1 if n is squarefree, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
The infinite lower triangular matrix with A008966 on the main diagonal and the rest zeros is the square of triangle A143255. - Gary W. Adamson, Aug 02 2008

Crossrefs

Cf. A005117, A008836 (Dirichlet inverse), A013928 (partial sums).
Parity of A002033.
Cf. A082020 (Dgf at s=2), A157289 (Dgf at s=3), A157290 (Dgf at s=4).

Programs

  • Haskell
    a008966 = abs . a008683
    -- Reinhard Zumkeller, Dec 13 2015, Dec 15 2014, May 27 2012, Jan 25 2012
    
  • Magma
    [ Abs(MoebiusMu(n)) : n in [1..100]];
    
  • Maple
    A008966 := proc(n) if numtheory[issqrfree](n) then 1 ; else 0 ; end if; end proc: # R. J. Mathar, Mar 14 2011
  • Mathematica
    A008966[n_] := Abs[MoebiusMu[n]]; Table[A008966[n], {n, 100}] (* Enrique Pérez Herrero, Apr 15 2010 *)
    Table[If[SquareFreeQ[n],1,0],{n,100}] (* or *) Boole[SquareFreeQ/@ Range[ 100]] (* Harvey P. Dale, Feb 28 2015 *)
  • MuPAD
    func(abs(numlib::moebius(n)), n):
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1+X))[n]
    
  • PARI
    a(n)=issquarefree(n) \\ Michel Marcus, Feb 22 2015
    
  • Python
    from sympy import factorint
    def A008966(n): return int(max(factorint(n).values(),default=1)==1) # Chai Wah Wu, Apr 05 2023

Formula

Dirichlet g.f.: zeta(s)/zeta(2s).
a(n) = abs(mu(n)), where mu is the Moebius function (A008683).
a(n) = 0^(bigomega(n) - omega(n)), where bigomega(n) and omega(n) are the numbers of prime factors of n with and without repetition (A001222, A001221, A046660). - Reinhard Zumkeller, Apr 05 2003
Multiplicative with p^e -> 0^(e - 1), p prime and e > 0. - Reinhard Zumkeller, Jul 15 2003
a(n) = 0^(A046951(n) - 1). - Reinhard Zumkeller, May 20 2007
a(n) = 1 - A107078(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = floor(rad(n)/n), where rad() is A007947. - Enrique Pérez Herrero, Nov 13 2009
A175046(n) = a(n)*A073311(n). - Reinhard Zumkeller, Apr 05 2010
a(n) = floor(A000005(n^2)/A007425(n)). - Enrique Pérez Herrero, Apr 15 2010
a(A005117(n)) = 1; a(A013929(n)) = 0; a(n) = A013928(n + 1) - A013928(n). - Reinhard Zumkeller, Jul 05 2010
a(n) * A112526(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = mu(n) * lambda(n) = A008836(n) * A008683(n). - Enrique Pérez Herrero, Nov 29 2013
a(n) = Sum_{d|n} 2^omega(d)*mu(n/d). - Geoffrey Critzer, Feb 22 2015
a(n) = A085357(A156552(n)). - Antti Karttunen, Mar 06 2017
Limit_{n->oo} (1/n)*Sum_{j=1..n} a(j) = 6/Pi^2. - Andres Cicuttin, Aug 13 2017
a(1) = 1; a(n) = -Sum_{d|n, d < n} (-1)^bigomega(n/d) * a(d). - Ilya Gutkovskiy, Mar 10 2021

Extensions

Deleted an unclear comment. - N. J. A. Sloane, May 30 2021

A030078 Cubes of primes.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021

Examples

			a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
		

References

  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.

Crossrefs

Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.

Programs

Formula

n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)

A062838 Cubes of squarefree numbers.

Original entry on oeis.org

1, 8, 27, 125, 216, 343, 1000, 1331, 2197, 2744, 3375, 4913, 6859, 9261, 10648, 12167, 17576, 24389, 27000, 29791, 35937, 39304, 42875, 50653, 54872, 59319, 68921, 74088, 79507, 97336, 103823, 132651, 148877, 166375, 185193, 195112, 205379, 226981, 238328
Offset: 1

Views

Author

Jason Earls, Jul 21 2001

Keywords

Comments

Cubefull numbers (A036966) all of whose nonunitary divisors are not cubefull (A362147). - Amiram Eldar, May 13 2023

Crossrefs

Other powers of squarefree numbers: A005117(1), A062503(2), A113849(4), A072774(all).
A329332 column 3 in ascending order.

Programs

  • Mathematica
    Select[Range[70], SquareFreeQ]^3 (* Harvey P. Dale, Jul 20 2011 *)
  • PARI
    for(n=1,35, if(issquarefree(n),print(n*n^2)))
    
  • PARI
    a(n) = my(m, c); if(n<=1, n==1, c=1; m=1; while(cAltug Alkan, Dec 03 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A062838(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**3 # Chai Wah Wu, Sep 11 2024

Formula

A055229(a(n)) = A005117(n) and A055229(m) < A005117(n) for m < a(n). - Reinhard Zumkeller, Apr 09 2010
a(n) = A005117(n)^3. - R. J. Mathar, Dec 03 2015
{a(n)} = {A225546(A000400(n)) : n >= 0}, where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Oct 31 2019
Sum_{n>=1} 1/a(n) = zeta(3)/zeta(6) = 945*zeta(3)/Pi^6 (A157289). - Amiram Eldar, May 22 2020

Extensions

More terms from Dean Hickerson, Jul 24 2001
More terms from Vladimir Joseph Stephan Orlovsky, Aug 15 2008

A368248 The number of unitary divisors of the cubefull part of n (A360540).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

First differs from A061704 and A362852 at n = 64, and from A304327 at n = 72.
Also, the number of squarefree divisors of the cubefull part of n.
Also, the number of cubes of squarefree numbers (A062838) that divide n.
The number of unitary divisors of n that are cubefull numbers (A036966). - Amiram Eldar, Jun 19 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 2, 2, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, 2), factor(n)[, 2]));

Formula

a(n) = A034444(A360540(n)).
a(n) = abs(A307428(n)).
Multiplicative with a(p) = 1 for e <= 2, and 2 for e >= 3.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A034444(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s)*zeta(3*s)/zeta(6*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289).
In general, the asymptotic mean of the number of unitary divisors of the k-full part of n is zeta(k)/zeta(2*k).

A295658 Multiplicative with a(p^e) = p^max(0,(floor(e/2)-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Comments

a(n) differs from A053164(n) = A000188(A000188(n)) for the first time at n=64, where a(64) = 4, while A053164(64) = 2.

Examples

			For n = 64 = 2^6, a(64) = 2^(floor(6/2)-1) = 2^2 = 4.
		

Crossrefs

Cf. A046100 (positions of ones), A157289.

Programs

  • Mathematica
    f[p_, e_] := p^Max[0, Floor[e/2-1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^max(0, floor(f[i,2]/2-1)));} \\ Amiram Eldar, Nov 30 2022

Formula

a(1) = 1; for n > 1, a(n) = A020639(n)^max(0,A004526(A067029(n))-1) * a(A028234(n)).
a(n) = A003557(A000188(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289). - Amiram Eldar, Nov 30 2022

A375073 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no other exponents.

Original entry on oeis.org

72, 108, 200, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 1800, 2312, 2700, 2888, 3087, 3267, 3528, 4232, 4500, 4563, 5292, 5324, 5400, 6125, 6728, 7688, 7803, 8575, 8712, 8788, 9000, 9747, 9800, 10584, 10952, 11979, 12168, 12348, 13068, 13448, 13500, 14283, 14792
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {2, 3}.
Number k such that A051904(k) = 2 and A051903(k) = 3.

Crossrefs

Equals A338325 \ (A062503 UNION A062838).
Subsequence of A001694 and A046100.
A143610 is a subsequence.

Programs

  • Mathematica
    Select[Range[15000], Union[FactorInteger[#][[;; , 2]]] == {2, 3} &]
  • PARI
    is(k) = Set(factor(k)[,2]) == [2, 3];

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^2 + 1/p^3) - 15/Pi^2 - zeta(3)/zeta(6) + 1 = A330595 - A082020 - A157289 + 1 = 0.047550294197921818806... .

A372930 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^5.

Original entry on oeis.org

1, 39, 269, 1304, 3249, 10491, 17149, 42176, 66069, 126711, 162381, 350776, 373489, 668811, 873981, 1353216, 1424769, 2576691, 2482957, 4236696, 4613081, 6332859, 6448509, 11345344, 10168625, 14566071, 16073721, 22362296, 20535537, 34085259, 28658941, 43331584
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(3*e-3) * (p^3 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d, 2));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^3.
a(n) = Sum_{d|n} mu(n/d) * d^3 * sigma_2(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(3*e-3) * (p^3 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-5)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(3)/zeta(6) = 1.181564... (A157289). (End)

A269404 Decimal expansion of Product_{k >= 1} (1 + 1/prime(k)^6).

Original entry on oeis.org

1, 0, 1, 7, 0, 9, 2, 7, 6, 9, 1, 3, 0, 4, 9, 9, 2, 7, 6, 6, 4, 3, 2, 7, 2, 1, 3, 3, 0, 9, 7, 9, 0, 9, 9, 2, 0, 4, 9, 2, 2, 1, 9, 0, 7, 9, 4, 9, 4, 1, 0, 1, 1, 3, 4, 6, 6, 4, 6, 5, 1, 7, 9, 3, 8, 1, 8, 9, 3, 5, 3, 3, 5, 8, 3, 4, 2, 2, 7, 9, 4, 3, 1, 8, 1, 5, 1, 5, 9, 6, 4, 7, 8, 5, 0, 6, 6, 8, 9, 7, 8, 4, 5, 4, 6, 5, 1, 0, 6, 4, 0, 2, 6, 1, 3, 3, 6, 9, 3, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 25 2016

Keywords

Comments

More generally, Product_{k >= 1} (1 + 1/prime(k)^m) = zeta(m)/zeta(2*m), where zeta(m) is the Riemann zeta function.

Examples

			1.0170927691304992766432721330979099204922190794941...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6]/Zeta[12], 10, 120][[1]]
    RealDigits[675675/(691 Pi^6), 10, 120][[1]]
  • PARI
    zeta(6)/zeta(12) \\ Amiram Eldar, Jun 11 2023

Formula

Equals zeta(6)/zeta(12).
Equals 675675/(691*Pi^6).
Equals Sum_{k>=1} 1/A005117(k)^6 = 1 + Sum_{k>=1} 1/A113851(k). - Amiram Eldar, Jun 27 2020

A370783 a(n) is the numerator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Examples

			Fractions begin with: 1, 1, 1, 3/2, 1, 1, 1, 3/2, 4/3, 1, 1, 3/2, ...
		

Crossrefs

Cf. A005117, A057521, A157289, A295295, A332880, A370784 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}

Formula

a(n) = A332880(A057521(n)).
Let f(n) = a(n)/A370784(n):
f(n) is multiplicative with f(p) = 1 and f(p^e) = 1 + 1/p for e >= 2.
f(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = zeta(3)/zeta(6) = 1.181564... (A157289) (Jakimczuk, 2024).

A376742 Decimal expansion of Product_{p prime} (p^3 + 1)/(p^3 - 1).

Original entry on oeis.org

1, 4, 2, 0, 3, 0, 8, 3, 0, 3, 4, 8, 9, 1, 9, 3, 3, 5, 3, 2, 4, 8, 1, 8, 4, 4, 2, 7, 0, 6, 5, 4, 9, 0, 0, 6, 7, 5, 8, 6, 3, 9, 4, 6, 7, 1, 6, 3, 6, 8, 5, 6, 1, 8, 6, 8, 8, 2, 3, 5, 4, 3, 0, 6, 2, 1, 4, 2, 2, 9, 5, 4, 8, 4, 3, 6, 3, 4, 1, 7, 8, 3, 9, 2, 6, 4, 3, 1, 6, 8, 4, 0, 6, 1, 7, 3, 6, 4, 0, 5
Offset: 1

Views

Author

Stefano Spezia, Oct 03 2024

Keywords

Examples

			1.420308303489193353248184427065490...
		

References

  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986. See equation 1.2.8 at p. 5.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3]^2/Zeta[6],10,100][[1]]
  • PARI
    prodeulerrat((p^3 + 1)/(p^3 - 1))

Formula

Equals zeta(3)^2/zeta(6) = Sum_{k>=1} 2^omega(k)/k^3. See Titchmarsh and Shamos.
Equals 945*zeta(3)^2/Pi^6.
Equals A157289 / A088453 = A013664 / A347328^2. - R. J. Mathar, Jul 14 2025
Showing 1-10 of 14 results. Next