cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A352141 Numbers whose prime factorization has all even indices and all even exponents.

Original entry on oeis.org

1, 9, 49, 81, 169, 361, 441, 729, 841, 1369, 1521, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 6241, 6561, 7569, 7921, 8281, 10201, 11449, 12321, 12769, 13689, 16641, 17161, 17689, 19321, 21609, 22801, 25281, 26569, 28561, 29241, 29929, 32761, 33489, 35721
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of partitions with all even parts and all even multiplicities, counted by A035444.

Examples

			The terms together with their prime indices begin:
     1 = 1
     9 = prime(2)^2
    49 = prime(4)^2
    81 = prime(2)^4
   169 = prime(6)^2
   361 = prime(8)^2
   441 = prime(2)^2 prime(4)^2
   729 = prime(2)^6
   841 = prime(10)^2
  1369 = prime(12)^2
  1521 = prime(2)^2 prime(6)^2
  1849 = prime(14)^2
  2401 = prime(4)^4
  2809 = prime(16)^2
  3249 = prime(2)^2 prime(8)^2
  3721 = prime(18)^2
  3969 = prime(2)^4 prime(4)^2
		

Crossrefs

The second condition alone (all even exponents) is A000290, counted by A035363.
The restriction to primes is A031215.
These partitions are counted by A035444.
The first condition alone is A066207, counted by A035363, squarefree A258117.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even exponents, odd A162642.
A257991 counts odd indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import factorint, primepi
    def A352141_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1)))
    A352141_list = list(islice(A352141_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A000290 and A066207.
A257991(a(n)) = A162642(a(n)) = 0.
A257992(a(n)) = A001222(a(n)).
A162641(a(n)) = A001221(a(n)).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k)^2) = 1.163719... . - Amiram Eldar, Sep 19 2022

A327471 Number of subsets of {1..n} not containing their mean.

Original entry on oeis.org

1, 1, 2, 4, 10, 22, 48, 102, 214, 440, 900, 1830, 3706, 7486, 15092, 30380, 61100, 122780, 246566, 494912, 992984, 1991620, 3993446, 8005388, 16044460, 32150584, 64414460, 129037790, 258462026, 517641086, 1036616262, 2075721252, 4156096036, 8320912744, 16658202200
Offset: 0

Views

Author

Gus Wiseman, Sep 12 2019

Keywords

Examples

			The a(1) = 1 through a(5) = 22 subsets:
  {}  {}     {}     {}         {}
      {1,2}  {1,2}  {1,2}      {1,2}
             {1,3}  {1,3}      {1,3}
             {2,3}  {1,4}      {1,4}
                    {2,3}      {1,5}
                    {2,4}      {2,3}
                    {3,4}      {2,4}
                    {1,2,4}    {2,5}
                    {1,3,4}    {3,4}
                    {1,2,3,4}  {3,5}
                               {4,5}
                               {1,2,4}
                               {1,2,5}
                               {1,3,4}
                               {1,4,5}
                               {2,3,5}
                               {2,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
		

Crossrefs

Subsets containing their mean are A065795.
Subsets containing n but not their mean are A327477.
Partitions not containing their mean are A327472.
Strict partitions not containing their mean are A240851.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],!MemberQ[#,Mean[#]]&]],{n,0,10}]
  • Python
    from sympy import totient, divisors
    def A327471(n): return (1<>(~k&k-1).bit_length(),generator=True))<<1)//k for k in range(1,n+1))>>1) # Chai Wah Wu, Feb 22 2023

Formula

a(n) = 2^n - A065795(n). - Alois P. Heinz, Sep 13 2019

Extensions

More terms from Alois P. Heinz, Sep 13 2019

A352140 Numbers whose prime factorization has all even prime indices and all odd exponents.

Original entry on oeis.org

1, 3, 7, 13, 19, 21, 27, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all even parts and all odd multiplicities, counted by A055922 aerated.
All terms are odd. - Michael S. Branicky, Mar 12 2022

Examples

			The terms together with their prime indices begin:
      1 = 1
      3 = prime(2)^1
      7 = prime(4)^1
     13 = prime(6)^1
     19 = prime(8)^1
     21 = prime(4)^1 prime(2)^1
     27 = prime(2)^3
     29 = prime(10)^1
     37 = prime(12)^1
     39 = prime(6)^1 prime(2)^1
     43 = prime(14)^1
     53 = prime(16)^1
     57 = prime(8)^1 prime(2)^1
     61 = prime(18)^1
     71 = prime(20)^1
		

Crossrefs

The restriction to primes is A031215.
These partitions are counted by A055922 (aerated).
The first condition alone is A066207, counted by A035363.
The squarefree case is A258117.
The second condition alone is A268335, counted by A055922.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Select[Range[100],And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from sympy import factorint, primepi
    def ok(n):
        if n%2 == 0: return False
        return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items())
    print([k for k in range(318) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

Intersection of A066207 and A268335.
A257991(a(n)) = A162641(a(n)) = 0.
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A001222(a(n)).

A325708 Numbers n whose prime indices cover an initial interval of positive integers and include all prime exponents of n.

Original entry on oeis.org

1, 2, 6, 12, 18, 30, 36, 60, 90, 120, 150, 180, 210, 270, 300, 360, 420, 450, 540, 600, 630, 750, 840, 900, 1050, 1080, 1260, 1350, 1470, 1500, 1680, 1800, 1890, 2100, 2250, 2310, 2520, 2700, 2940, 3000, 3150, 3780, 4200, 4410, 4500, 4620, 5040, 5250, 5400
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions covering an initial interval of positive integers and containing all of their distinct multiplicities. The enumeration of these partitions by sum is given by A325707.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     6: {1,2}
    12: {1,1,2}
    18: {1,2,2}
    30: {1,2,3}
    36: {1,1,2,2}
    60: {1,1,2,3}
    90: {1,2,2,3}
   120: {1,1,1,2,3}
   150: {1,2,3,3}
   180: {1,1,2,2,3}
   210: {1,2,3,4}
   270: {1,2,2,2,3}
   300: {1,1,2,3,3}
   360: {1,1,1,2,2,3}
   420: {1,1,2,3,4}
   450: {1,2,2,3,3}
   540: {1,1,2,2,2,3}
   600: {1,1,1,2,3,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],#==1||Range[PrimeNu[#]]==PrimePi/@First/@FactorInteger[#]&&SubsetQ[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]&]

A351979 Numbers whose prime factorization has all odd prime indices and all even prime exponents.

Original entry on oeis.org

1, 4, 16, 25, 64, 100, 121, 256, 289, 400, 484, 529, 625, 961, 1024, 1156, 1600, 1681, 1936, 2116, 2209, 2500, 3025, 3481, 3844, 4096, 4489, 4624, 5329, 6400, 6724, 6889, 7225, 7744, 8464, 8836, 9409, 10000, 10609, 11881, 12100, 13225, 13924, 14641, 15376
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all odd parts and all even multiplicities, counted by A035457 (see Emeric Deutsch's comment there).

Examples

			The terms together with their prime indices begin:
     1: 1
     4: prime(1)^2
    16: prime(1)^4
    25: prime(3)^2
    64: prime(1)^6
   100: prime(1)^2 prime(3)^2
   121: prime(5)^2
   256: prime(1)^8
   289: prime(7)^2
   400: prime(1)^4 prime(3)^2
   484: prime(1)^2 prime(5)^2
   529: prime(9)^2
   625: prime(3)^4
   961: prime(11)^2
  1024: prime(1)^10
  1156: prime(1)^2 prime(7)^2
  1600: prime(1)^6 prime(3)^2
  1681: prime(13)^2
  1936: prime(1)^4 prime(5)^2
		

Crossrefs

The second condition alone (exponents all even) is A000290, counted by A035363.
The distinct prime factors of terms all come from A031368.
These partitions are counted by A035457 or A000009 aerated.
The first condition alone (indices all odd) is A066208, counted by A000009.
The squarefree square roots are A258116, even A258117.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by complement of A086543.
A076610 = indices all prime, counted by A000607.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even exponents, odd A162642.
A257991 counts odd indices, even A257992.
A268335 = exponents all odd, counted by A055922.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A352140 = even indices with odd exponents, counted by A055922 (aerated).
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices and odd multiplicities, counted by A117958.

Programs

  • Mathematica
    Select[Range[1000],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
  • Python
    from sympy import factorint, primepi
    def ok(n):
        return all(primepi(p)%2==1 and e%2==0 for p, e in factorint(n).items())
    print([k for k in range(15500) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

Squares of elements of A066208.
Intersection of A066208 and A000290.
A257991(a(n)) = A001222(a(n)).
A162641(a(n)) = A001221(a(n)).
A162642(a(n)) = A257992(a(n)) = 0.
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k-1)^2) = 1.4135142... . - Amiram Eldar, Sep 19 2022

A325707 Number of integer partitions of n covering an initial interval of positive integers and containing all of their distinct multiplicities.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 4, 4, 5, 6, 7, 8, 10, 11, 13, 16, 18, 23, 26, 32, 36, 43, 48, 57, 64, 74, 84, 98, 110, 127, 145, 165, 189, 215, 244, 277, 316, 356, 403, 455, 513, 577, 650, 727, 817, 913, 1024, 1143, 1279, 1425, 1592, 1773, 1977, 2198, 2448, 2717
Offset: 0

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325708.

Examples

			The initial terms count the following partitions:
   1: (1)
   3: (21)
   4: (211)
   5: (221)
   6: (321)
   6: (2211)
   7: (3211)
   8: (3221)
   8: (32111)
   9: (3321)
   9: (32211)
  10: (4321)
  10: (33211)
  10: (32221)
  10: (322111)
  11: (43211)
  11: (33221)
  11: (332111)
  11: (322211)
  12: (43221)
  12: (432111)
  12: (33321)
  12: (332211)
  12: (3222111)
		

Crossrefs

Cf. A000009 (partitions covering an initial interval), A055932, A109297, A114639, A114640, A290689, A324753, A325702, A325706, A325708.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Range[Length[Union[#]]]==Union[#]&&SubsetQ[Sort[#],Sort[Length/@Split[#]]]&]],{n,0,30}]

A352518 Numbers > 1 that are not a prime power and whose prime indices and exponents are all themselves prime numbers.

Original entry on oeis.org

225, 675, 1089, 1125, 2601, 3025, 3267, 3375, 6075, 7225, 7803, 8649, 11979, 15125, 15129, 24025, 25947, 27225, 28125, 29403, 30375, 31329, 33275, 34969, 35937, 36125, 40401, 42025, 44217, 45387, 54675, 62001, 65025, 70227, 81675, 84375, 87025, 93987
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices (not factors) begin:
     225: {2,2,3,3}
     675: {2,2,2,3,3}
    1089: {2,2,5,5}
    1125: {2,2,3,3,3}
    2601: {2,2,7,7}
    3025: {3,3,5,5}
    3267: {2,2,2,5,5}
    3375: {2,2,2,3,3,3}
    6075: {2,2,2,2,2,3,3}
    7225: {3,3,7,7}
    7803: {2,2,2,7,7}
    8649: {2,2,11,11}
   11979: {2,2,5,5,5}
   15125: {3,3,3,5,5}
   15129: {2,2,13,13}
   24025: {3,3,11,11}
   25947: {2,2,2,11,11}
   27225: {2,2,3,3,5,5}
   28125: {2,2,3,3,3,3,3}
For example, 7803 = prime(1)^3 prime(4)^2.
		

Crossrefs

These partitions are counted by A352493.
This is the restriction of A346068 to numbers that are not a prime power.
The prime-power version is A352519, counted by A230595.
A000040 lists the primes.
A000961 lists prime powers.
A001694 lists powerful numbers, counted by A007690.
A038499 counts partitions of prime length.
A053810 lists all numbers p^q for p and q prime, counted by A001221.
A056166 = prime exponents are all prime, counted by A055923.
A076610 = prime indices are all prime, counted by A000607, powerful A339218.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A257994 counts prime indices that are themselves prime, nonprime A330944.
A325131 = disjoint indices from exponents, counted by A114639.

Programs

  • Mathematica
    Select[Range[10000],!PrimePowerQ[#]&& And@@PrimeQ/@PrimePi/@First/@FactorInteger[#]&& And@@PrimeQ/@Last/@FactorInteger[#]&]

Formula

Sum_{n>=1} 1/a(n) = (Product_{p prime-indexed prime} (1 + Sum_{q prime} 1/p^q)) - (Sum_{p prime-indexed prime} Sum_{q prime} 1/p^q) - 1 = 0.0106862606... . - Amiram Eldar, Aug 04 2024

A352519 Numbers of the form prime(p)^q where p and q are primes. Prime powers whose prime index and exponent are both prime.

Original entry on oeis.org

9, 25, 27, 121, 125, 243, 289, 961, 1331, 1681, 2187, 3125, 3481, 4489, 4913, 6889, 11881, 16129, 24649, 29791, 32041, 36481, 44521, 58081, 68921, 76729, 78125, 80089, 109561, 124609, 134689, 160801, 161051, 177147, 185761, 205379, 212521, 259081, 299209
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

Alternatively, numbers of the form prime(prime(i))^prime(j) for some positive integers i, j.

Examples

			The terms together with their prime indices begin:
      9: {2,2}
     25: {3,3}
     27: {2,2,2}
    121: {5,5}
    125: {3,3,3}
    243: {2,2,2,2,2}
    289: {7,7}
    961: {11,11}
   1331: {5,5,5}
   1681: {13,13}
   2187: {2,2,2,2,2,2,2}
   3125: {3,3,3,3,3}
   3481: {17,17}
   4489: {19,19}
   4913: {7,7,7}
   6889: {23,23}
  11881: {29,29}
  16129: {31,31}
  24649: {37,37}
  29791: {11,11,11}
		

Crossrefs

Numbers of the form p^q for p and q prime are A053810, counted by A001221.
These partitions are counted by A230595.
This is the prime power case of A346068.
For numbers that are not a prime power we have A352518, counted by A352493.
A000040 lists the primes.
A000961 lists prime powers.
A001597 lists perfect powers.
A001694 lists powerful numbers, counted by A007690.
A056166 = prime exponents are all prime, counted by A055923.
A076610 = prime indices are all prime, counted by A000607, powerful A339218.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A164336 lists all possible power-towers of prime numbers.
A257994 counts prime indices that are themselves prime, nonprime A330944.
A325131 = disjoint indices from exponents, counted by A114639.

Programs

  • Maple
    N:= 10^7: # for terms <= N
    M:=numtheory:-pi(numtheory:-pi(isqrt(N))):
    PP:= {seq(ithprime(ithprime(i)),i=1..M)}:
    R:= NULL:
    for p in PP do
      q:= 1:
      do
        q:= nextprime(q);
        t:= p^q;
        if t > N then break fi;
        R:= R, t;
      od;
    od:
    sort([R]); # Robert Israel, Dec 08 2022
  • Mathematica
    Select[Range[10000],PrimePowerQ[#]&&MatchQ[FactorInteger[#],{{?(PrimeQ[PrimePi[#]]&),k?PrimeQ}}]&]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A352519(n):
        def f(x): return int(n+x-sum(primepi(primepi(integer_nthroot(x,p)[0])) for p in primerange(x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

A352493 Number of non-constant integer partitions of n into prime parts with prime multiplicities.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 3, 0, 1, 4, 5, 3, 1, 3, 5, 7, 3, 5, 6, 8, 8, 11, 7, 6, 8, 15, 14, 14, 10, 15, 17, 21, 18, 23, 20, 28, 25, 31, 27, 35, 32, 33, 37, 46, 41, 50, 45, 58, 56, 63, 59, 78, 69, 76, 81, 85, 80, 103, 107, 111, 114, 127
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2022

Keywords

Examples

			The a(n) partitions for selected n (B = 11):
n = 10    16       19        20         25          28
   ---------------------------------------------------------------
    3322  5533     55333     7733       77722       BB33
          55222    55522     77222      5533333     BB222
          3322222  3333322   553322     5553322     775522
                   33322222  5522222    55333222    55533322
                             332222222  55522222    772222222
                                        333333322   3322222222222
                                        3333322222
		

Crossrefs

Constant partitions are counted by A001221, ranked by A000961.
Non-constant partitions are counted by A144300, ranked A024619.
The constant version is A230595, ranked by A352519.
This is the non-constant case of A351982, ranked by A346068.
These partitions are ranked by A352518.
A000040 lists the primes.
A000607 counts partitions into primes, ranked by A076610.
A001597 lists perfect powers, complement A007916.
A038499 counts partitions of prime length.
A053810 lists primes to primes.
A055923 counts partitions with prime multiplicities, ranked by A056166.
A257994 counts prime indices that are themselves prime.
A339218 counts powerful partitions into prime parts, ranked by A352492.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&And@@PrimeQ/@#&& And@@PrimeQ/@Length/@Split[#]&]],{n,0,30}]

A336032 Number of compositions of n such that the set of parts and the set of multiplicities of parts are disjoint.

Original entry on oeis.org

1, 0, 2, 2, 2, 4, 6, 6, 14, 34, 79, 159, 227, 429, 727, 1146, 1999, 3238, 5018, 8976, 14977, 24768, 38400, 70678, 152535, 295493, 617675, 1404099, 3023086, 6685876, 14230031, 30218806, 62175519, 127820798, 257285277, 516574751, 1021334631, 2009999405, 3917878730
Offset: 0

Views

Author

Alois P. Heinz, Jul 07 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, f, g) option remember; `if`(f intersect g<>{}, 0,
          `if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j, `if`(j=0,
           f, {f[], i}), `if`(j=0, g, {g[], j}))/j!, j=0..n/i))))
        end:
    a:= n-> b(n$2, 0, {}$2):
    seq(a(n), n=0..32);
  • Mathematica
    b[n_, i_, p_, f_, g_] := b[n, i, p, f, g] = If[f ~Intersection~ g != {}, 0,
         If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j,
         If[j == 0, f, Union@Append[f, i]],
         If[j == 0, g, Union@Append[g, j]]]/j!, {j, 0, n/i}]]]];
    a[n_] := b[n, n, 0, {}, {}];
    Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)
Previous Showing 11-20 of 21 results. Next