cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A034876 Number of ways to write n! as a product of smaller factorials each greater than 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

By definition, a(n) > 0 if and only if n is a member of A034878. If n > 2, then a(n!) > max(a(n), a(n!-1)), as (n!)! = n!*(n!-1)!. Similarly, a(A001013(n)) > 0 for n > 2. Clearly a(n)=0 if n is a prime A000040. So a(n+1)=1 if n=2^p-1 is a Mersenne prime A000668, as (n+1)!=(2!)^p*n! and n is prime. - Jonathan Sondow, Dec 15 2004
From Antti Karttunen, Dec 25 2018: (Start)
If n! = a! * x! * y! * ... * z!, with a > x >= y >= z, then A006530(n!) = A006530(a!) > A006530(x!). This follows because all rows in A115627 end with 1, that is, because all factorials >= 2 are in A102750.
If all the two-term solutions are of the form n! = a! * x! = b! * y! = ... = c! * z! (that is, all are products of two factorials larger than one), with a > x, b > y, ..., c > z, then a(n) = (a(x)+1 + a(y)+1 + ... + a(z)+1).
Values 0..5 occur for the first time at n = 1, 4, 10, 576, 13824, 69120.
In range 1..69120 differs from A322583 only at positions n = 1, 2, 9, 10 and 16.
(End)

Examples

			a(10) = 2 because 10! = 3! * 5! * 7! = 6! * 7! are the only two ways to write 10! as a product of smaller factorials > 1.
From _Antti Karttunen_, Dec 25 2018: (Start)
a(8) = 1 because 8! = 7! * (2!)^3.
a(9) = 1 because 9! = 7! * 3! * 3! * 2!.
a(16) = 2 because 16! = 15! * (2!)^4 = 14! * 5! * 2!.
a(144) = 2 because 144! = 143! * 4! * 3! = 143! * 3! * 3! * 2! * 2!.
a(576) = 3 because 576! = 575! * 4! * 4! = 575! * 4! * 3! * 2! * 2! = 575! * 3! * 3! * 2! * 2! * 2! * 2!.
a(720) = 2 because 720! = 719! * 6! = 719! * 5! * 3!.
a(3456) = 3 because 3456! = 3455! * 4! * 4! * 3! = 3455! * 4! * 3! * 3! * 2! * 2! = 3455! * 3! * 3! * 3! * 2! * 2! * 2! * 2!.
(End)
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B23.

Crossrefs

Programs

  • PARI
    A034876aux(n, m, p) = if(1==n, 1, my(s=0); forstep(i=m, p, -1, my(f=i!); if(!(n%f), s += A034876aux(n/f, i, 2))); (s));
    A034876(n) = if(1==n,0,A034876aux(n!, n-1, precprime(n))); \\ (Slow) - Antti Karttunen, Dec 24 2018
    
  • PARI
    A322583aux(n, m) = if(1==n, 1, my(s=0); for(i=2, oo, my(f=i!); if(f>m, return(s)); if(!(n%f), s += A322583aux(n/f, f))));
    memoA322583 = Map();
    A322583(n) = { my(c); if(mapisdefined(memoA322583,n,&c), c, c = A322583aux(n,n); mapput(memoA322583,n,c); (c)); };
    A034876aux(n, m, p) = if(1==n, 1, my(s=0); forstep(i=m, p, -1, my(f=i!); s += A322583(n/f)); (s));
    A034876(n) = if(1==n, 0, A034876aux(n!, n-1, precprime(n))); \\ Antti Karttunen, Dec 25 2018

Formula

a(1) = 0; for n > 1, a(n) = Sum_{x=A007917(n)..n-1} A322583(n!/x!) when n is a composite, and a(n) = 0 when n is a prime. - Antti Karttunen, Dec 25 2018

Extensions

Corrected by Jonathan Sondow, Dec 18 2004

A249344 A(n,k) = exponent of the largest power of n-th prime which divides k, square array read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Comments

Square array A(n,k), where n = row, k = column, read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... (transpose of array A060175).
A(n,k) is the (p_n)-adic valuation of k, where p_n is the n-th prime, A000040(n).
Each row is effectively a ruler function, s, with s(1) = 0. - Peter Munn, Apr 30 2022

Examples

			The top-left corner of the array:
  0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...
  0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, ...
  0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ...
  0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ...
  ...
A(1,8) = 3, because 2^3 is the largest power of 2 (= p_1 = A000040(1)) that divides 8.
a(2,9) = 2, because 3^2 is the largest power of 3 (= p_2) that divides 9.
a(3,15) = 1, because 5^1 is the largest power of 5 (= p_3) that divides 15.
		

Crossrefs

Transpose: A060175.
Row 1: A007814.
Row 2: A007949.
Row 3: A112765.
Row 4: A214411.
Completely additive sequences where more than one prime is mapped to 1, all other primes to 0: A065339, A083025, A087436, A169611.
Ruler functions, s, with s(1) = 0 that are not rows here: A122840, A122841, A235127, A244413.

Programs

  • Mathematica
    A[n_, k_] := IntegerExponent[k, Prime[n]]; Table[A[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    a(n, k) = valuation(k, prime(n)); \\ Michel Marcus, Jun 24 2017
  • Python
    from sympy import prime
    def a(n, k):
        p=prime(n)
        i=z=0
        while p**i<=k:
            if k%(p**i)==0: z=i
            i+=1
        return z
    for n in range(1, 10): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
    
  • Scheme
    (define (A249344 n) (A249344bi (A002260 n) (A004736 n)))
    (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1)))))))
    

Formula

Row n, as a sequence, is completely additive with A(n, prime(n)) = 1, A(n, prime(m)) = 0 for m <> n. - Peter Munn, Apr 30 2022
Sum_{k=1..m} A(n,k) ~ (1/(prime(n)-1)) * m. - Amiram Eldar, Oct 01 2023

A336496 Products of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 34560, 36864, 41472, 49152, 55296
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A317804 in having 34560, which is the first term with more than two distinct prime factors.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   48: {1,1,1,1,2}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

A001013 is the version for factorials, with complement A093373.
A181818 is the version for superprimorials, with complement A336426.
A336497 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178.
A174605 is the maximum prime multiplicity in A000178.
A303279 counts prime factors of superfactorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]

A085604 T(n,k) = highest power of prime(k) dividing n!, read by rows.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 3, 1, 1, 0, 0, 4, 2, 1, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 7, 2, 1, 1, 0, 0, 0, 0, 7, 4, 1, 1, 0, 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 11, 5, 2, 2, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 07 2003

Keywords

Comments

T(n,1) = A011371(n); T(n,2) = A054861(n) for n>1;
T(n,k) = number of occurrences of prime(k) as factor in numbers <= n (with repetitions);
Sum{T(n,k): 1<=k<=n} = A022559(n);
T(n, A000720(n)) = 1; T(n,k) = 0, A000720(n)
T(n,k) = A115627(n,k) for n > 1 and k=1..A000720(n). - Reinhard Zumkeller, Nov 01 2013

Examples

			0;
1,0;
1,1,0;
3,1,0,0;
3,1,1,0,0;
4,2,1,0,0,0;
4,2,1,1,0,0,0;
7,2,1,1,0,0,0,0;
7,4,1,1,0,0,0,0,0;
8,4,2,1,0,0,0,0,0,0;
		

Crossrefs

Programs

  • Haskell
    a085604 n k = a085604_tabl !! (n-2) !! (k-1)
    a085604_row 1 = [0]
    a085604_row n = a115627_row n ++ (take $ a062298 $ fromIntegral n) [0,0..]
    a085604_tabl = map a085604_row [1..]
    -- Reinhard Zumkeller, Nov 01 2013
  • Mathematica
    T[n_, k_] := Module[{p = Prime[k], jm}, jm = Floor[Log[p, n]]; Sum[Quotient[n, p^j], {j, 1, jm}]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)

A177349 Primes p for which no m! has a prime power factorization of the form 2^p*...*p^1*...

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 43, 59, 61, 83, 103, 107, 139, 151, 157, 163, 167, 179, 199, 211, 223, 227, 233, 241, 251, 257, 269, 283, 307, 313, 317, 331, 347, 373, 379, 409, 419, 433, 443, 457, 503, 509, 523, 541, 547, 563, 569, 571, 587, 601, 607, 617, 619, 643
Offset: 1

Author

Vladimir Shevelev, May 07 2010

Keywords

Comments

One can prove that for p>=5 the number of such m is 0 or 2.

Examples

			p=109 is not in the sequence because for m=112 we have 112! = 2^109*3^54*...*109 which is of the form 2^p*...*p*.. [_R. J. Mathar_, Oct 29 2010]
		

Crossrefs

Cf. A000142.

Programs

  • Maple
    isA177349 := proc(p) if isprime(p) then pid := numtheory[pi](p) ; for m from 1 do h2 := A115627(m,1) ; if h2 > p then return true; elif h2 = p then if A115627(m,pid) = 1 then return false; end if; end if; end do; else false; fi ; end proc:
    for i from 1 to 120 do p := ithprime(i) ; if isA177349(p) then printf("%d,",p); end if; end do: # R. J. Mathar, Oct 29 2010
  • Mathematica
    c[n_, p_] := Sum[IntegerExponent[k, p], {k, 2, n}]; m = 120; v = Table[0, {m}]; s = 0; n = 2; While[s <= Prime[m], s += IntegerExponent[n, 2]; If[ PrimeQ[s] && (i = PrimePi[s]) <= m && c[n, s] == 1, v[[i]] = 1]; n++]; t = Prime /@ (Position[v, ?(# == 0 &)] // Flatten); t (* _Amiram Eldar, Sep 13 2019 *)

Extensions

2 added, 109 replaced by 107, sequence extended beyond 199 by R. J. Mathar, Oct 29 2010

A177458 The number of positive integers m for which the exponents of prime(n) and prime(n+1) in the prime power factorization of m! are both powers of 2.

Original entry on oeis.org

9, 22, 23, 22, 42, 37, 40, 90, 63, 96, 147, 120, 111, 134, 237, 166, 219, 304, 214, 279, 254, 252, 369, 484, 399, 520, 429, 270, 519, 481, 709, 426, 793, 581, 611, 734, 661, 691, 1003, 615, 1087, 914, 1129, 647, 707, 1094, 1339, 1130, 1032, 1423, 915, 1140
Offset: 3

Author

Vladimir Shevelev, May 09 2010, May 10 2010

Keywords

Comments

This gives the number of rows in A115627 for which the n-th and (n+1)st column are both in {1,2,4,8,16,..}.
For n=2 the corresponding value is not known and >=25; moreover, we do not know if this value is finite.
A more general result concerning the cases for non-adjacent primes and a finite search interval for the values of m is in the 2007 publication.

Examples

			For n=3, the 9 values of m are 7, 8, 9, 10, 11, 12, 13, 14, and 20.
m=6, for example, is not counted because 6!=2^4*3^2*5 does not contain prime(4)=7.
m=15, for example, is not counted because 15!=2^11*3^6*5^3*7^2*11*13 contains a third power of prime(3)=5.
		

Crossrefs

Programs

Extensions

Edited, example and relation to A115627 added, terms after 120 added by R. J. Mathar, Oct 29 2010
Extended by T. D. Noe, Apr 10 2012

A325543 Width (number of leaves) of the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 9, 12, 14, 16, 17, 20, 22, 25, 27, 31, 33, 36, 39, 42, 45, 47, 49, 53, 55, 58, 61, 65, 67, 70, 71, 76, 78, 81, 84, 88, 91, 95, 98, 102, 104, 108, 111, 114, 117, 120, 122, 127, 131, 134, 137, 141, 145, 149, 151, 156, 160, 163, 165, 169, 172
Offset: 0

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also the multiplicity of q(1) in the factorization of n! into factors q(i) = prime(i)/i. For example, the factorization of 7! is q(1)^9 * q(2)^3 * q(3) * q(4), so a(7) = 9.

Examples

			Matula-Goebel trees of the first 9 factorial numbers are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
		

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[n!],{n,0,100}]

Formula

For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).

A325544 Number of nodes in the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 12, 15, 18, 22, 26, 30, 34, 38, 42, 47, 51, 55, 60, 64, 69, 74, 79, 84, 89, 95, 100, 106, 111, 116, 122, 127, 132, 138, 143, 149, 155, 160, 165, 171, 177, 182, 188, 193, 199, 206, 212, 218, 224, 230, 237, 243, 249, 254, 261, 268, 274, 280
Offset: 0

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also one plus the number of factors in the factorization of n! into factors q(i) = prime(i)/i. For example, the q-factorization of 7! is 7! = q(1)^9 * q(2)^3 * q(3) * q(4), with 14 = a(7) - 1 factors.

Examples

			Matula-Goebel trees of the first 9 factorial number are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of nodes is the number of o's plus the number of brackets, giving {1,1,2,4,6,9,12,15,18}, as required.
		

Programs

  • Mathematica
    mgwt[n_]:=If[n==1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>mgwt[PrimePi[p]]*k]]];
    Table[mgwt[n!],{n,0,100}]

Formula

For n > 1, a(n) = 1 - n + Sum_{k = 1..n} A061775(k).

A336497 Numbers that cannot be written as a product of superfactorials A000178.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A336426 in having 360.

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}        22: {1,5}        39: {2,6}
     5: {3}        23: {9}          40: {1,1,1,3}
     6: {1,2}      25: {3,3}        41: {13}
     7: {4}        26: {1,6}        42: {1,2,4}
     9: {2,2}      27: {2,2,2}      43: {14}
    10: {1,3}      28: {1,1,4}      44: {1,1,5}
    11: {5}        29: {10}         45: {2,2,3}
    13: {6}        30: {1,2,3}      46: {1,9}
    14: {1,4}      31: {11}         47: {15}
    15: {2,3}      33: {2,5}        49: {4,4}
    17: {7}        34: {1,7}        50: {1,3,3}
    18: {1,2,2}    35: {3,4}        51: {2,7}
    19: {8}        36: {1,1,2,2}    52: {1,1,6}
    20: {1,1,3}    37: {12}         53: {16}
    21: {2,4}      38: {1,8}        54: {1,2,2,2}
		

Crossrefs

A093373 is the version for factorials, with complement A001013.
A336426 is the version for superprimorials, with complement A181818.
A336496 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178(n).
A174605 is the maximum prime multiplicity in A000178(n).
A303279 counts prime factors (with multiplicity) of superprimorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&]

A266743 Irregular triangle T(n,k) read by rows: see Comments for definition.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 1, 2, 1, 6, 15, 10, 1, 2, 6, 5, 1, 12, 42, 42, 14, 1, 3, 12, 14, 7, 1, 10, 45, 60, 42, 10, 1, 2, 10, 15, 14, 5, 1, 12, 66, 110, 132, 66, 22, 1, 2, 12, 22, 33, 22, 11, 1, 420, 2730, 5460, 10010, 8580, 6006, 910, 1
Offset: 1

Author

N. J. A. Sloane, Jan 08 2016

Keywords

Comments

Let p_i denote the i-th prime, let pi(n) = A000720(n), and let N! = Product_{i = 1..pi(N)} (p_i)^U(N,i) be the prime factorization of N!, where U(N,i) = A115627(N,i).
Let V(n,i) = floor(n/(prime(i)-1)) = A266742(n,i).
The present triangle is defined by T(n,k) =
Product_{i} (p_i)^V(n,i) / ( Product_{j} (p_j)^V(k,j) * Product_{r} (p_r)^U(n-k+1,r) ).

Examples

			Triangle begins:
    1;
    1,    1;
    2,    3,    1;
    1,    2,    1;
    6,   15,   10,     1;
    2,    6,    5,     1;
   12,   42,   42,    14,    1;
    3,   12,   14,     7,    1;
   10,   45,   60,    42,   10,    1;
    2,   10,   15,    14,    5,    1;
   12,   66,  110,   132,   66,   22,   1;
    2,   12,   22,    33,   22,   11,   1;
  420, 2730, 5460, 10010, 8580, 6006, 910, 1;
  ...
		

Crossrefs

Previous Showing 11-20 of 30 results. Next