cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A128882 a(n) = n!! - 1.

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 47, 104, 383, 944, 3839, 10394, 46079, 135134, 645119, 2027024, 10321919, 34459424, 185794559, 654729074, 3715891199, 13749310574, 81749606399, 316234143224, 1961990553599, 7905853580624, 51011754393599
Offset: 0

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

n divides a(n-1) and a(n+1) for n = {1, 2, 8, 11, 16, 19, 23, 31, 32, 43, 64, 67, 71, ...} which include all powers of 2 except 2^2 and some odd primes of the form 4k+3 belonging to A002145.
p^2 divides a(p-1) for odd prime p = 71.
p^2 divides a(p+1) for odd prime p = 23.
a(n) is prime for n = {3, 4, 6, 8, 16, 26, 64, 82, 90, 118, 194, 214, ...} = A007749; A007749(n) = 2*A091415(n-1) for n > 1. Corresponding primes of the form n!! - 1 are listed in A117141, cf. also A093173.

Crossrefs

Programs

  • Mathematica
    Table[ n!! - 1, {n,0,35} ]

Formula

a(n) = A006882(n) - 1.

A139164 a(n) = (prime(n)!+6)/6.

Original entry on oeis.org

2, 21, 841, 6652801, 1037836801, 59281238016001, 20274183401472001, 4308669456480829440001, 1473626998956616992423936000001, 1370473109029653802954260480000001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 6)/6, {n, 2, 30}]

Extensions

Offset corrected by Georg Fischer, Apr 04 2022

A139165 a(n)=(prime(n)!+7)/7.

Original entry on oeis.org

721, 5702401, 889574401, 50812489728001, 17377871486976001, 3693145248412139520001, 1263108856248528850649088000001, 1174691236311131831103651840000001
Offset: 4

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 7)/7, {n, 4, 30}]

A256594 Numbers k such that k!*2^k + 1 is prime.

Original entry on oeis.org

0, 1, 259, 16708, 18655, 26304, 61999, 110251
Offset: 1

Views

Author

Robert Price, Apr 03 2015

Keywords

Examples

			0 is in the sequence since 0!*2^0 + 1 = 2 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3*10^2] | IsPrime(Factorial(n)*2^n+1)]; // Vincenzo Librandi, Apr 05 2015
    
  • Mathematica
    Select[Range[0, 20000], PrimeQ[2^#*#! + 1] &]
  • PARI
    for(n=0,300,if(ispseudoprime(n!*2^n+1),print1(n,", "))) \\ Derek Orr, Apr 05 2015
    
  • Python
    from sympy import factorial, isprime
    for n in range(0,300):
        if isprime(factorial(n)*(2**n)+1):
            print(n, end=', ') # Stefano Spezia, Dec 06 2018

Formula

a(n) = A080778(n+1)/2 for n >= 2. - Amiram Eldar, Dec 06 2018

Extensions

a(6)-a(8), from the data at A080778, added by Amiram Eldar, Dec 06 2018

A139073 Smallest prime number of the form (n+k!)/n.

Original entry on oeis.org

2, 2, 3, 7, 1009, 2, 5702401, 631, 4481, 13, 566092801, 3, 23452949585516450807808000001, 259201, 337, 2521, 3553839003727872684550301886383176323956736000000001, 41
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ k = 1; While[ ! PrimeQ[ (k! + n)/n ], k++ ]; AppendTo[ a, (k! + n)/n ], {n, 1, 100} ]; a [Corrected May 06 2008]
  • PARI
    a(n)=my(k,t);until(denominator(t=k++!/n+1)==1&&ispseudoprime(t),);t \\ Charles R Greathouse IV, Jul 19 2011

Formula

a(n) = (n + A139072(n)!)/n. - Amiram Eldar, Oct 14 2024

A139091 a(n) = largest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

17, 827, 22319071, 1718296754087, 35662591735219, 477262171871, 1609727002420791262479701, 146215297537890243023, 2020914387433686758547638152441, 1073774770807266077323
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, Last[w][[1]]], {n, 4, 16}]; a

A122719 Primes p such that (2p)!! - 1 is prime.

Original entry on oeis.org

2, 3, 13, 41, 59, 97, 107, 421, 1663, 22159
Offset: 1

Views

Author

Alexander Adamchuk, Sep 23 2006

Keywords

Comments

a(n) are the primes from A091415[n] = {2,3,4,8,13,32,41,45,59,97,107,364,421,...} Numbers n such that n!*2^n - 1 is prime. Corresponding primes of the form (2p)!! - 1 are {3,5,270269,26226140915375977206881249, 58431212742946338570036120182498518593749,...}
No other terms up to 3000. - Stefan Steinerberger, Sep 09 2007

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[651]],PrimeQ[(2#)!!-1]&]

Extensions

a(9) from Stefan Steinerberger, Sep 09 2007
a(10) from Robert Price, Nov 26 2013

A139090 a(n) = smallest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

3, 31, 31, 23, 379, 83, 610301, 293, 101, 47, 281, 127, 278174297, 2971, 109, 5090615254324820333, 46411, 106087, 269, 288931, 59047158151, 120871, 373, 19140822523, 56595118147, 1708207, 331, 38749, 157, 2927, 2143
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, First[w][[1]]], {n, 4, 16}]; a
    Table[FactorInteger[p!/9+1][[1,1]],{p,Prime[Range[4,35]]}] (* Harvey P. Dale, Sep 19 2020 *)

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010

A274385 Double factorial primes: primes which are within 1 of a double factorial number.

Original entry on oeis.org

2, 3, 7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 19 2016

Keywords

Examples

			a(2) = 3 = 2 + 1 = 2!! + 1 is the 2nd prime of that form.
a(4) = 47 = 2*4*6 - 1 = 6!! - 1 is the 4th prime of that form.
		

Crossrefs

Programs

  • Magma
    r:=91; I:=[1, 1]; lst1:=[n le 2 select I[n] else (n-1)*Self(n-2): n in [1..r]]; lst2:=[]; for c in [1..r] do a:=lst1[c]; for s in [-1..1 by 2] do p:=a+s; if IsPrime(p) and not p in lst2 then Append(~lst2, p); end if; end for; end for; lst2;
Previous Showing 41-49 of 49 results.