cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A118941 Primes p such that (p^2-5)/4 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 31, 41, 43, 53, 61, 71, 79, 83, 89, 97, 101, 107, 109, 113, 131, 137, 167, 173, 179, 193, 229, 241, 251, 263, 269, 277, 281, 283, 307, 311, 317, 349, 353, 373, 383, 419, 431, 439, 461, 463, 467, 563, 571, 577, 593, 607, 613, 619, 647
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2-5. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-5)/4]&]

A118942 Primes p such that (p^2-13)/12 is prime.

Original entry on oeis.org

7, 13, 17, 19, 23, 31, 37, 41, 53, 67, 71, 73, 89, 103, 107, 113, 131, 139, 157, 163, 181, 199, 211, 233, 239, 257, 269, 283, 307, 311, 337, 359, 373, 379, 401, 419, 463, 487, 491, 499, 509, 521, 577, 593, 607, 617, 631, 647, 653, 683, 701, 733, 761, 769, 787
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 12 divides q^2-13. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118941.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-13)/12]&]

A241101 Primes p such that (p^3 - 4)/3 is prime.

Original entry on oeis.org

7, 31, 37, 43, 61, 73, 97, 103, 157, 163, 211, 277, 331, 337, 457, 487, 613, 661, 733, 751, 811, 883, 991, 1021, 1093, 1297, 1321, 1483, 1693, 1741, 1873, 2083, 2113, 2143, 2203, 2221, 2287, 2347, 2437, 2473, 2707, 2917, 3001, 3067, 3187, 3307, 3331, 3343, 3541
Offset: 1

Views

Author

K. D. Bajpai, Apr 16 2014

Keywords

Examples

			7 is prime and appears in the sequence because (7^3 - 4)/3 = 113 which is a prime.
31 is prime and appears in the sequence because (31^3 - 4)/3 = 9929 which is a prime.
		

Crossrefs

Cf. A109953 (primes p: (p^2+1)/3 is prime).
Cf. A118915 (primes p: (p^2+5)/6 is prime).
Cf. A118918 (primes p: (p^2+11)/12 is prime).

Programs

  • Maple
    KD:= proc() local a,b;a:=ithprime(n); b:=(a^3-4)/3; if b=floor(b) and isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[(#^3 - 4)/3] &]
    n = 0; Do[If[PrimeQ[(Prime[k]^3 - 4)/3], n = n + 1; Print[n, " ", Prime[k]]], {k, 1, 200000}] (*b-file*)
  • PARI
    s=[]; forprime(p=2, 4000, if((p^3-4)%3==0 && isprime((p^3-4)/3), s=concat(s, p))); s \\ Colin Barker, Apr 16 2014

A253939 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6 and (p^6 + 5)/6 are prime.

Original entry on oeis.org

7309, 45361, 67103, 97777, 128521, 149381, 374669, 543313, 656459, 872747, 940913, 1110817, 1219877, 1288603, 1324567, 1599319, 1629809, 2006677, 2129527, 2495501, 2544121, 2735839, 2763053, 2786363, 2856167, 3145661, 3428839, 3585149, 4063877, 4115971
Offset: 1

Views

Author

Zak Seidov, Jan 20 2015

Keywords

Crossrefs

Subsequence of A253925. Cf. A118915, A247478.

Programs

  • Magma
    [p: p in PrimesUpTo(10^7) | IsPrime((p^2+5) div 6) and IsPrime((p^4+5) div 6) and IsPrime((p^6+5) div 6)]; // Vincenzo Librandi, Jan 21 2015
  • Mathematica
    Select[Prime[Range[10^7]], PrimeQ[(#^2 + 5) / 6] &&PrimeQ[(#^4 + 5) / 6] &&PrimeQ[(#^6 + 5) / 6] &] (* Vincenzo Librandi, Jan 21 2015 *)
    Select[Prime[Range[3*10^5]],AllTrue[(#^{2,4,6}+5)/6,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 10 2016 *)

A235705 Primes p such that (p^3 + 6)/5 is prime.

Original entry on oeis.org

19, 59, 269, 349, 409, 419, 479, 769, 929, 1109, 1319, 1399, 1979, 2609, 3659, 4079, 4919, 5309, 5449, 5879, 6079, 6299, 6949, 7069, 7129, 7229, 7699, 7829, 8069, 8329, 8599, 9679, 10729, 11969, 12809, 13109, 13229, 13859, 14159, 14419, 14629, 14929, 15259
Offset: 1

Views

Author

K. D. Bajpai, Apr 20 2014

Keywords

Comments

All the terms in the sequence are congruent to 1 or 3 mod 4.

Examples

			a(1) = 19 is prime: (19^3 + 6)/ 5 = 1373 which is also prime.
a(2) = 59 is prime: (59^3 + 6)/ 5 = 41077 which is also prime.
		

Crossrefs

Cf. A109953 (primes p: (p^2+1)/3 is prime).
Cf. A118915 (primes p: (p^2+5)/6 is prime).
Cf. A118918 (primes p: (p^2+11)/12 is prime).
Cf. A241101 (primes p: (p^3-4)/3 is prime).
Cf. A241120 (primes p: (p^3+2)/3 is prime).

Programs

  • Maple
    KD:= proc() local a,b; a:=ithprime(n); b:=(a^3+6)/5; if b=floor(b) and isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..5000);
  • Mathematica
    Select[Prime[Range[5000]], PrimeQ[(#^3 + 6)/5] &]
    n = 0; Do[If[PrimeQ[(Prime[k]^3 + 6)/5], n = n + 1; Print[n, " ", Prime[k]]], {k, 1, 200000}] (*b-file*)
  • PARI
    s=[]; forprime(p=2, 20000, if((p^3+6)%5==0 && isprime((p^3+6)/5), s=concat(s, p))); s \\ Colin Barker, Apr 21 2014

A241099 Primes p such that (p^3 + 4)/3 is prime.

Original entry on oeis.org

5, 23, 53, 113, 173, 197, 269, 317, 383, 443, 557, 563, 587, 647, 659, 773, 797, 827, 947, 983, 1097, 1103, 1187, 1217, 1229, 1889, 1913, 1949, 2039, 2099, 2153, 2213, 2339, 2357, 2399, 2417, 2447, 2579, 2693, 2837, 2879, 2897, 2903, 2939, 2969, 3089, 3203
Offset: 1

Views

Author

K. D. Bajpai, Apr 15 2014

Keywords

Examples

			5 is prime and appears in the sequence because (5^3 + 4)/3 = 43 which is a prime.
23 is prime and appears in the sequence because (23^3 + 4)/3 = 4057 which is a prime.
		

Crossrefs

Cf. A109953 (primes p:(p^2+1)/3 is prime).
Cf. A118915 (primes p:(p^2+5)/6 is prime).
Cf. A118918 (primes p:(p^2+11)/12 is prime).

Programs

  • Maple
    KD:= proc() local a,b;a:=ithprime(n); b:=(a^3+4)/3; if b=floor(b) and isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[(#^3 + 4)/3] &]
    n = 0; Do[If[PrimeQ[(Prime[k]^3 + 4)/3], n = n + 1; Print[n, " ", Prime[k]]], {k, 1, 200000}] (* b-file *)
Previous Showing 11-16 of 16 results.