cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A178818 Decimal expansion of the diameter of the regular 7-gon (heptagon) of edge length 1.

Original entry on oeis.org

2, 0, 7, 6, 5, 2, 1, 3, 9, 6, 5, 7, 2, 3, 3, 6, 5, 6, 7, 1, 6, 3, 5, 3, 8, 8, 6, 1, 4, 8, 5, 8, 4, 0, 3, 3, 0, 7, 0, 5, 7, 2, 0, 2, 0, 6, 6, 2, 5, 9, 6, 8, 5, 2, 4, 0, 8, 3, 4, 1, 7, 3, 7, 6, 8, 6, 3, 0, 2, 8, 4, 8, 7, 0, 6, 4, 5, 9, 7, 7, 1, 7, 4, 6, 4, 4, 1, 7, 5, 5, 1, 5, 9, 7, 6, 0, 6, 2, 2, 5, 3, 5, 4, 8, 8
Offset: 1

Views

Author

Keywords

Examples

			2.07652139657233656716353886148584033070572020662596852408341737686302...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Cot(Pi(R)/7); // G. C. Greubel, Jan 22 2019
    
  • Maple
    evalf[120](cot(Pi/7)); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    RealDigits[Cot[Pi/7],10, 100][[1]]
  • PARI
    default(realprecision, 100); cotan(Pi/7) \\ G. C. Greubel, Jan 22 2019
    
  • Sage
    numerical_approx(cot(pi/7), digits=100) # G. C. Greubel, Jan 22 2019

Formula

Digits of cot(Pi/7).
Largest of the 6 real-valued roots of 7*x^6 -35*x^4 +21*x^2 -1=0. - R. J. Mathar, Aug 29 2025

A385506 Decimal expansion of the volume of a triaugmented triangular prism with unit edge.

Original entry on oeis.org

1, 1, 4, 0, 1, 1, 9, 4, 8, 3, 0, 7, 8, 7, 6, 6, 8, 4, 7, 7, 8, 2, 7, 0, 5, 9, 4, 7, 4, 8, 1, 3, 1, 7, 1, 3, 1, 0, 2, 0, 5, 3, 7, 2, 5, 1, 1, 4, 1, 0, 6, 9, 1, 9, 3, 6, 0, 2, 2, 9, 1, 6, 1, 3, 8, 5, 8, 3, 4, 9, 4, 9, 3, 4, 5, 8, 2, 5, 3, 5, 2, 8, 6, 9, 5, 4, 8, 0, 3, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 01 2025

Keywords

Comments

The triaugmented triangular prism is Johnson solid J_51.

Examples

			1.140119483078766847782705947481317131020537251141...
		

Crossrefs

Cf. A097715 (surface area).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[8] + Sqrt[3])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J51", "Volume"], 10, 100]]

Formula

Equals 1/sqrt(2) + sqrt(3)/4 = A010503 + A120011 = (A010466 + A002194)/4.
Equals the largest root of 256*x^4 - 352*x^2 + 25.

A364895 Decimal expansion of the 4-volume of the unit regular pentachoron (5-cell).

Original entry on oeis.org

0, 2, 3, 2, 9, 2, 3, 7, 4, 7, 6, 5, 6, 2, 2, 8, 0, 9, 3, 3, 7, 5, 9, 5, 5, 5, 9, 0, 4, 9, 2, 8, 4, 1, 2, 7, 4, 5, 2, 5, 0, 6, 4, 4, 1, 2, 4, 5, 9, 5, 3, 3, 9, 2, 9, 6, 1, 1, 5, 5, 1, 7, 9, 6, 3, 9, 6, 9, 2, 9, 2, 6, 3, 0, 8, 7, 2, 7, 1, 3, 4, 3, 6, 8, 9, 0, 0, 1, 5, 0, 0, 8, 7, 2, 7, 8, 9, 8, 2, 0
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of sqrt(5)/96.
In general, the n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)).

Examples

			Equals 0.02329237476562280933...
		

Crossrefs

Decimal expansion of 4-volumes: this sequence (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), A364896 (120-cell), A364897 (600-cell).
Decimal expansion of the n-volume of the unit regular n-simplex: A120011 (n=2), A020829 (n=3), this sequence (n=4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[5]/96, 10, 100, -1]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    sqrt(5)/96

A343486 Decimal expansion of (29/96)*sqrt(3).

Original entry on oeis.org

5, 2, 3, 2, 2, 3, 6, 8, 1, 4, 5, 3, 0, 9, 8, 3, 4, 9, 0, 8, 6, 4, 1, 6, 0, 8, 2, 3, 2, 9, 8, 9, 8, 9, 4, 4, 1, 8, 0, 6, 3, 9, 0, 8, 7, 0, 8, 8, 5, 5, 2, 4, 8, 1, 3, 9, 1, 8, 5, 8, 3, 5, 8, 3, 7, 6, 1, 0, 4, 7, 6, 5, 5, 2, 4, 5, 3, 3, 3, 4, 4, 5, 3, 4, 9, 2, 9, 5, 7, 7, 2, 4, 9, 5, 8, 5, 5, 0, 7, 2, 3, 5, 3, 4, 5
Offset: 0

Views

Author

Kevin Ryde, Apr 17 2021

Keywords

Comments

Area of the convex hull around the terdragon fractal. As the limit of finite expansion levels, equals lim_{n->oo} (sqrt(3)/4) * A343485(n) / 3^n, where sqrt(3)/4 = A120011 is the area of a unit-side equilateral triangle.

Examples

			0.52322368145309834908641608232989894...
		

Crossrefs

Cf. A343485 (terdragon finite hull areas), A343487 (terdragon hull perimeter), A120011 (unit triangle area).

Programs

  • Mathematica
    RealDigits[29*Sqrt[3]/96, 10, 120][[1]] (* Amiram Eldar, Jun 29 2023 *)
  • PARI
    my(c=29/96*quadgen(3*4)); a_vector(len) = digits(floor(c*10^len));

A386001 Decimal expansion of the surface area of a tridiminished icosahedron with unit edge.

Original entry on oeis.org

7, 3, 2, 6, 4, 9, 5, 7, 1, 1, 2, 2, 7, 9, 9, 7, 3, 8, 5, 1, 8, 6, 3, 4, 3, 8, 5, 9, 0, 4, 8, 1, 6, 9, 2, 5, 6, 9, 0, 0, 6, 2, 9, 0, 7, 7, 2, 9, 3, 5, 7, 0, 7, 7, 2, 6, 9, 1, 0, 4, 2, 8, 4, 5, 3, 8, 6, 5, 2, 3, 2, 4, 7, 7, 6, 2, 8, 9, 8, 7, 4, 0, 3, 4, 8, 7, 5, 6, 4, 5
Offset: 1

Views

Author

Paolo Xausa, Jul 17 2025

Keywords

Comments

The tridiminished icosahedron is Johnson solid J_63.

Examples

			7.32649571122799738518634385904816925690062907729...
		

Crossrefs

Cf. A386000 (volume).

Programs

  • Mathematica
    First[RealDigits[(5*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J63", "SurfaceArea"], 10, 100]]

Formula

Equals (5*sqrt(3) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (5*A002194 + 3*sqrt(5*(5 + A010476)))/4.
Equals 3*A102771 + 5*A120011 = A386003 - 2*A120011.
Equals the largest root of 256*x^8 - 19200*x^6 + 324000*x^4 - 1687500*x^2 + 1265625.

A386003 Decimal expansion of the surface area of an augmented tridiminished icosahedron with unit edge.

Original entry on oeis.org

8, 1, 9, 2, 5, 2, 1, 1, 1, 5, 0, 1, 2, 4, 3, 6, 0, 3, 1, 9, 5, 0, 0, 6, 7, 0, 2, 9, 8, 0, 1, 1, 0, 5, 4, 4, 0, 3, 7, 2, 0, 3, 1, 7, 0, 4, 1, 9, 8, 7, 6, 1, 0, 8, 6, 7, 1, 8, 9, 4, 6, 3, 3, 5, 1, 1, 2, 4, 8, 9, 7, 5, 6, 2, 1, 7, 2, 9, 8, 7, 5, 8, 8, 8, 9, 3, 2, 9, 5, 5
Offset: 1

Views

Author

Paolo Xausa, Jul 18 2025

Keywords

Comments

The augmented tridiminished icosahedron is Johnson solid J_64.

Examples

			8.192521115012436031950067029801105440372031704...
		

Crossrefs

Cf. A386002 (volume).

Programs

  • Mathematica
    First[RealDigits[(7*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J64", "SurfaceArea"], 10, 100]]

Formula

Equals (7*sqrt(3) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (7*A002194 + 3*sqrt(5*(5 + A010476)))/4.
Equals 3*A102771 + 7*A120011 = A386001 + 2*A120011.
Equals the largest root of 256*x^8 - 23808*x^6 + 484704*x^4 - 2752812*x^2 + 4626801.

A154605 Decimal expansion of 2/(4th root of 3).

Original entry on oeis.org

1, 5, 1, 9, 6, 7, 1, 3, 7, 1, 3, 0, 3, 1, 8, 5, 0, 9, 4, 6, 6, 2, 3, 7, 5, 5, 0, 1, 3, 0, 9, 0, 9, 0, 6, 7, 0, 7, 9, 3, 5, 4, 6, 8, 9, 7, 7, 7, 4, 6, 2, 0, 6, 3, 7, 2, 2, 2, 5, 7, 7, 3, 0, 7, 4, 0, 0, 6, 4, 4, 4, 6, 6, 3, 4, 2, 0, 9, 4, 5, 4, 3, 1, 8, 8, 8, 2, 1, 2, 2, 8, 3, 3, 0, 0, 7, 4, 3, 1, 3, 9, 3, 3, 0, 2
Offset: 1

Views

Author

Rick L. Shepherd, Jan 12 2009

Keywords

Comments

The side length of an equilateral triangle with area 1.
Quartic number with denominator 3 and minimal polynomial 3x^4 - 16. - Charles R Greathouse IV, Jun 30 2021

Examples

			1.5196713713031850946623755013090906...
		

Crossrefs

Programs

Formula

A154605 = 2/A011002 = 2/(3^(1/4)).

A179047 Decimal expansion of 9*sqrt(3)/4, the area of an equilateral triangle of side length 3.

Original entry on oeis.org

3, 8, 9, 7, 1, 1, 4, 3, 1, 7, 0, 2, 9, 9, 7, 3, 9, 1, 0, 4, 3, 6, 7, 5, 4, 2, 6, 8, 3, 8, 8, 2, 1, 2, 8, 2, 5, 6, 2, 1, 3, 1, 1, 8, 2, 1, 0, 7, 3, 3, 5, 6, 4, 1, 3, 1, 2, 5, 5, 6, 5, 7, 0, 3, 7, 6, 6, 8, 4, 9, 2, 8, 8, 0, 4, 4, 8, 0, 0, 0, 8, 3, 4, 3, 2, 5, 7, 8, 9, 2, 0, 2, 0, 3, 8, 0, 9, 2, 9, 5, 2, 7, 0, 1, 5
Offset: 1

Views

Author

Keywords

Examples

			3.89711431702997391043675426838821282562131182107335641312556570376684...
		

Crossrefs

Programs

  • Mathematica
    a=b=c=3;area=Sqrt[(a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c)]/4;RealDigits[N[area,200]]
    RealDigits[9 Sqrt[3]/4,10,120][[1]] (* Harvey P. Dale, Apr 27 2025 *)

A179050 Decimal expansion of 5/(2*sqrt(5+2*sqrt(5))), area of regular pentagram with base edge length 1.

Original entry on oeis.org

8, 1, 2, 2, 9, 9, 2, 4, 0, 5, 8, 2, 2, 6, 5, 8, 1, 5, 3, 8, 9, 6, 7, 8, 5, 3, 0, 5, 3, 7, 8, 3, 6, 1, 6, 2, 3, 8, 7, 2, 5, 8, 6, 7, 8, 8, 0, 3, 6, 8, 7, 7, 5, 0, 7, 6, 9, 5, 1, 1, 7, 9, 7, 8, 4, 1, 6, 8, 2, 2, 5, 2, 4, 0, 1, 8, 6, 2, 3, 7, 0, 8, 0, 6, 7, 1, 9, 3, 3, 8, 6, 1, 7, 4, 1, 2, 6, 2, 6, 2, 0, 4, 2, 5, 9
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 4: the smaller positive root of 16x^4 - 200x^2 + 125. - Charles R Greathouse IV, Dec 03 2012

Examples

			0.81229924058226581538967853053783616238725867880368775076951179784168...
		

Crossrefs

Programs

  • Mathematica
    a=1;area=5/(2*Sqrt[5+2*Sqrt[5]]);RealDigits[N[area,20]]
  • PARI
    5/sqrt(20+8*sqrt(5)) \\ Charles R Greathouse IV, Dec 03 2012

Extensions

Offset corrected, keyword:cons inserted by R. J. Mathar, Jun 28 2010
Name corrected by Charles R Greathouse IV, Dec 03 2012

A308358 Beatty sequence for sqrt(3)/4.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 29, 30, 30, 31, 31, 32, 32, 32, 33, 33, 34, 34
Offset: 0

Views

Author

R. J. Mathar, May 22 2019

Keywords

Comments

Differs from A057357 first at n=37.

Crossrefs

Cf. A120011.

Programs

  • Mathematica
    Floor[Sqrt[3] Range[0, 100]/4] (* Wesley Ivan Hurt, Dec 26 2023 *)

Formula

a(n) = floor(n*A120011).
A171971(n) = a(n^2).
Previous Showing 11-20 of 30 results. Next