cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A128029 Numbers n such that (14^n - 3^n)/11 is prime.

Original entry on oeis.org

2, 5, 13, 67, 2657, 3547, 15649
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
There is no further term up to prime(1400)=11657. - Farideh Firoozbakht, Apr 04 2007
No other terms < 100,000.

Crossrefs

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime. Cf. A057468 = numbers n such that 3^n - 2^n is prime. Cf. A059801 = numbers n such that 4^n - 3^n is prime. Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf. A128024, A128025, A128026, A128027, A128028, A128030, A128031, A128032.

Programs

  • Mathematica
    k=11; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    is(n)=isprime((14^n-3^n)/11) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from Farideh Firoozbakht, Apr 04 2007
Added term a(7)=15649 by Robert Price, Sep 12 2011

A128030 Numbers k such that (16^k - 3^k)/13 is prime.

Original entry on oeis.org

2, 3, 31, 467, 1747, 29683
Offset: 1

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All terms are primes.
No other terms < 100000.

Crossrefs

Cf. A028491 = numbers n such that (3^n - 1)/2 is prime. Cf. A057468 = numbers n such that 3^n - 2^n is prime. Cf. A059801 = numbers n such that 4^n - 3^n is prime. Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf. A128024, A128025, A128026, A128027, A128028, A128029, A128031, A128032.

Programs

  • Mathematica
    k=13; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
  • PARI
    is(n)=isprime((16^n-3^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

1747 from Farideh Firoozbakht, Apr 08 2007
a(6)=29683 from Robert Price, Sep 13 2011

A128336 Numbers k such that (6^k + 5^k)/11 is prime.

Original entry on oeis.org

3, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms less than 100000. - Robert Price, May 11 2012

Crossrefs

Programs

  • Mathematica
    k=6; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    forprime(p=3,1e4,if(ispseudoprime((6^p+5^p)/11),print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2011

Extensions

a(7)-a(9) from Alexander Adamchuk, May 04 2010
One more term (8783) added (unknown discoverer) corresponding to a probable prime with 6834 digits by Jean-Louis Charton, Oct 06 2010

A128347 Numbers k such that (11^k - 5^k)/6 is prime.

Original entry on oeis.org

5, 41, 149, 229, 263, 739, 3457, 20269, 98221
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jan 24 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n-5^n)/6) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jan 24 2013

A128342 Numbers k such that (13^k + 5^k)/18 is prime.

Original entry on oeis.org

13, 19, 31, 359, 487, 757, 761, 1667, 2551, 3167, 6829
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms below 23600. - Max Alekseyev, Feb 01 2010
a(12) > 10^5. - Robert Price, Apr 30 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n+5^n)/18) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Four more terms from Max Alekseyev, Feb 01 2010

A128341 Numbers k such that (12^k + 5^k)/17 is prime.

Original entry on oeis.org

3, 5, 13, 347, 977, 1091, 4861, 4967, 34679
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, May 05 2013

Crossrefs

Programs

  • Mathematica
    k=12; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
    Select[Range[1100],PrimeQ[(12^#+5^#)/17]&] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    is(n)=isprime((12^n+5^n)/17) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Two more terms (a(7) and a(8)) from Harvey P. Dale, Jul 24 2012
a(9) from Robert Price, May 05 2013

A128339 Numbers k such that (9^k + 5^k)/14 is prime.

Original entry on oeis.org

3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Dec 26 2012

Crossrefs

Programs

  • Magma
    [n: n in [3..300] |IsPrime((9^n + 5^n) div 14)]; // Vincenzo Librandi, Nov 02 2018
  • Mathematica
    k=9; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((9^n+5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
    

Extensions

3 more PRP terms from Sean A. Irvine, Oct 01 2009

A128340 Numbers k such that (11^k + 5^k)/16 is prime.

Original entry on oeis.org

7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(11) > 10^5. - Robert Price, Feb 09 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n+5^n)/16) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(10) from Robert Price, Feb 09 2013

A128346 Numbers k such that (9^k - 5^k)/4 is prime.

Original entry on oeis.org

3, 11, 17, 173, 839, 971, 40867, 45821, 147503
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(9) > 10^5. - Robert Price, Jan 19 2013
a(10) > 10^6. - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    k=9; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((9^n-5^n)/4) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(8) from Robert Price, Jan 19 2013
a(8) corrected by Robert Price, Jan 20 2013
a(9) from Jon Grantham, Jul 29 2023

A128348 Numbers k such that (12^k - 5^k)/7 is prime.

Original entry on oeis.org

2, 3, 31, 41, 53, 101, 421, 1259, 4721, 45259
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
Primality of the primes formed by a(8) and a(9) were certified by Primo. - Ray G. Opao, Jul 01 2012
a(11) > 10^5. - Robert Price, Mar 02 2013

Crossrefs

Programs

  • Mathematica
    k=12; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((12^n-5^n)/7) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(8) and a(9) from Ray G. Opao, Jul 01 2012
a(10) from Robert Price, Mar 02 2013
Previous Showing 11-20 of 53 results. Next