cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A216181 Numbers n such that (11^n - 4^n)/7 is prime.

Original entry on oeis.org

3, 5, 11, 17, 71, 89, 827, 22307, 45893, 63521
Offset: 1

Views

Author

Robert Price, Mar 11 2013

Keywords

Comments

All terms are prime.
Next term > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(11^# - 4^#)/7]&]
  • PARI
    is(n)=ispseudoprime((11^n-4^n)/7) \\ Charles R Greathouse IV, Feb 20 2017

A121938 Primes of the form (3^k + 5^k)/2^3 = A074606(k)/8.

Original entry on oeis.org

19, 421, 10039, 95383574161, 2384331073699, 1925929944387235853055979210606894889560480247048440342330377620014353281101
Offset: 1

Views

Author

Zak Seidov, Sep 10 2006

Keywords

Comments

Corresponding numbers k such that (3^k + 5^k)/8 is prime are listed in A122853. All these numbers are primes. - Alexander Adamchuk, Sep 14 2006
The next term is too large to include. - Alexander Adamchuk, Sep 14 2006

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}] (* Alexander Adamchuk, Sep 14 2006 *)

Formula

a(n) = (A122853(n)^3 + A122853(n)^5)/8. a(n) = A074606[A122853(n)]/8 = A081186[A122853(n)]/4. a(n) = A079773[A122853(n)]. - Alexander Adamchuk, Sep 14 2006

Extensions

More terms from Alexander Adamchuk, Sep 14 2006

A122478 Minimum number k>0 such that ((2n+1)^k - (2n-1)^k)/2 is prime.

Original entry on oeis.org

3, 13, 3, 3, 5, 3, 17, 3, 163, 3, 3, 109, 3, 13, 19, 5, 3, 3, 1879, 3, 13, 379, 7, 1531, 7, 5, 337, 5, 3, 61, 19, 3, 23, 3, 11, 16417, 163, 23, 3, 5, 3, 3, 3, 5
Offset: 1

Views

Author

Alexander Adamchuk, Sep 14 2006, Sep 17 2006, Oct 07 2006

Keywords

Comments

All a(n) are primes. Corresponding minimal primes of the form ((2n+1)^k - (2n-1)^k)/2 are {13, 609554401, 109, 193, 51001, 433, 44937854708156010721, 769, ...}.
a(46)-a(49) are 17, 5, 31, 3. a(51)-a(61) are 109, 5, 7, 89, 13, 3, 31, 53, 5, 3, 5. a(63)-a(69) are 3, 7, 19, 5, 167, 163, 293. a(71)-a(74) are 3, 3407, 3, 3. a(76)-a(77) are 3, 19.
a(45), a(50), a(62), a(70), a(75) are currently unknown.
a(45) > 30000. - Max Alekseyev, May 18 2010

Crossrefs

Programs

  • Mathematica
    s={};Do[k=1;Until[PrimeQ[((2n+1)^k-(2n-1)^k)/2],k++];AppendTo[s,k] ,{n,35}];s (* James C. McMahon, Oct 27 2024 *)

Extensions

a(36)=16417 from Max Alekseyev, May 11 2010

A123704 Numbers k such that (5^p - 3^p)/2 is prime, where p = prime(k).

Original entry on oeis.org

6, 8, 9, 11, 15, 31, 48, 60, 314, 701, 940, 942, 2164, 2981, 3810, 6971, 12068, 13641, 16502, 68800
Offset: 1

Views

Author

Alexander Adamchuk, Oct 08 2006

Keywords

Comments

The corresponding primes p = prime(a(n)) are listed in A121877.
The corresponding primes of the form (5^p - 3^p)/2 are listed in A123705.
a(13) is greater than 1000. - Farideh Firoozbakht, Oct 11 2006

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(5^Prime[n] - 3^Prime[n])/2], Print[n]], {n, 1000}] (* Robert G. Wilson v, Jan 12 2007 *)
    PrimePi[#]&/@Select[Prime[Range[1000]],PrimeQ[(5^#-3^#)/2]&] (* Harvey P. Dale, Sep 23 2018 *)

Formula

a(n) = primepi(A121877(n)).

Extensions

More terms from Farideh Firoozbakht, Oct 11 2006
a(13)-a(16) computed from A121877 by Jinyuan Wang, Mar 23 2020
a(17)-a(19) from Kellen Shenton, May 18 2022
a(20) from Amiram Eldar, Sep 06 2024

A173718 Numbers n such that (9^n - 2^n)/7 is prime.

Original entry on oeis.org

2, 3, 5, 13, 29, 37, 1021, 1399, 2137, 4493, 5521, 108553, 200807
Offset: 1

Views

Author

Robert Price, Dec 22 2012

Keywords

Comments

All terms are prime.
a(14) > 10^6.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (9^# - 2^#)/7 ]& ]
  • PARI
    is(n)=ispseudoprime((9^n-2^n)/7) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(12)-a(13) from Jon Grantham, Jul 29 2023

A128033 Least number k>0 such that ((n+3)^k - 3^k)/n is prime, or 0 if no such prime exists.

Original entry on oeis.org

0, 2, 13, 0, 3, 2, 0, 2, 3, 0, 7, 2, 0, 2, 3, 0, 73, 2, 0, 5, 3, 0, 3, 2, 0, 2, 3, 0, 3, 3, 0, 2, 5, 0, 3, 2, 0, 2, 401, 0, 3, 2, 0, 5, 5, 0, 3, 2, 0
Offset: 0

Views

Author

Alexander Adamchuk, Feb 11 2007

Keywords

Comments

All positive terms are primes.
a(50)-a(67) = {7, 0, 79, 2, 0, 2, 109, 0, 5, 5, 0, 2, 5, 0, 131, 2, 0, 2}. a(69)-a(121) = {0, 3, 19, 0, 2, 5, 0, 11, 2, 0, 13, 7, 0, 3, 2, 0, 3, 11, 0, 3, 19, 0, 2, 3, 0, 11, 2, 0, 2, 3, 0, 17, 2, 0, 2, 3, 0, 5, 2, 0, 3, 31, 0, 17, 5, 0, 47, 31, 0, 3, 3, 0, 2}.
a(49) > 10000. - Jinyuan Wang, Nov 28 2020

Crossrefs

Cf. A128049 (least number k>0 such that abs((3^k - (3-n)^k)/n) is prime), A028491, A121877, A128024, A128025, A128026, A128027, A128028, A128029, A128030, A128031, A128032.

Programs

  • PARI
    a(n) = my(p=2); if(n%3, while(!ispseudoprime(((n+3)^p-3^p)/n), p=nextprime(p+1)); p, 0); \\ Jinyuan Wang, Nov 28 2020

Formula

a(3*n) = 0.

A215487 Numbers k such that (7^k - 2^k)/5 is prime.

Original entry on oeis.org

3, 7, 19, 79, 431, 1373, 1801, 2897, 46997, 341063, 508867, 720497, 846913
Offset: 1

Views

Author

Robert Price, Aug 12 2012

Keywords

Comments

All terms are prime.
a(14) > 10^6.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 300] ], PrimeQ[ (7^# - 2^#)/5 ]& ]
  • PARI
    is(n)=ispseudoprime((7^n-2^n)/5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(10)-a(13) from Jon Grantham, Jul 29 2023

A224691 Numbers n such that (13^n - 4^n)/9 is prime.

Original entry on oeis.org

2, 5, 19, 109, 157, 8521, 26017, 26177
Offset: 1

Views

Author

Robert Price, Apr 15 2013

Keywords

Comments

All terms are prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(13^# - 4^#)/9]&]
  • PARI
    is(n)=ispseudoprime((13^n-4^n)/9) \\ Charles R Greathouse IV, Jun 13 2017

A247093 Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0

Original entry on oeis.org

3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1

Views

Author

Eric Chen, Nov 18 2014

Keywords

Comments

T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015

Examples

			Read by rows:
m\n        1   2   3   4   5   6   7   8   9   10  11
2          3
3          3   3
4          0   0   3
5          3   5   13  3
6          3   0   0   0   5
7          5   3   3   5   3   3
8          3   0   3   0   19  0   7
9          0   3   0   0   3   0   3   7
10         19  0   3   0   0   0   31  0   3
11         17  5   3   3   5   3   5   7   5   3
12         3   0   0   0   3   0   3   0   0   0   3
etc.
		

Crossrefs

Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).

Programs

  • Mathematica
    t1[n_] := Floor[3/2 + Sqrt[2*n]]
    m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
    t2[n_] := n-m[n]*(m[n]+1)/2
    b[n_] := GCD @@ Last /@ FactorInteger[n]
    is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
    Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1);
    a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););}
    tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
    
  • PARI
    t1(n)=floor(3/2+sqrt(2*n))
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
    b(n)=my(k=ispower(n)); if(k, k, n>1)
    a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015

A177224 a(n) is the least prime of the form ((2n+1)^k - (2n-1)^k)/2.

Original entry on oeis.org

13, 609554401, 109, 193, 51001, 433, 44937854708156010721, 769
Offset: 1

Views

Author

Alexander Adamchuk, May 05 2010

Keywords

Comments

a(9) = (19^163 - 17^163)/2 is too large to include here.
Corresponding values of k (odd primes) are listed in A122478.

Crossrefs

Formula

a(n) = ((2n+1)^A122478(n) - (2n-1)^A122478(n)) / 2.

Extensions

Edited by Max Alekseyev, May 16 2010
Previous Showing 41-50 of 53 results. Next