cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A137447 a(n) = 4*a(n-4) for n>3, a(0)=-1, a(1)=-4, a(2)=2, a(3)=12.

Original entry on oeis.org

-1, -4, 2, 12, -4, -16, 8, 48, -16, -64, 32, 192, -64, -256, 128, 768, -256, -1024, 512, 3072, -1024, -4096, 2048, 12288, -4096, -16384, 8192, 49152, -16384, -65536, 32768, 196608, -65536, -262144, 131072, 786432, -262144, -1048576, 524288, 3145728, -1048576
Offset: 0

Views

Author

Paul Curtz, Apr 18 2008

Keywords

Crossrefs

Programs

  • Magma
    &cat[[-(-2)^n,2^n-5*(-2)^n]: n in [0..20]];  // Bruno Berselli, Nov 02 2011
    
  • Mathematica
    LinearRecurrence[{0,0,0,4},{-1,-4,2,12},50] (* or *) CoefficientList[ Series[(1+4x-2x^2-12x^3)/(4x^4-1),{x,0,50}],x] (* Harvey P. Dale, Jun 27 2011 *)
  • SageMath
    def A137447(n): return 2^(n//2)*(-1)^(n//2+1) if n%2==0 else 2^((n-1)//2)*(1 - 5*(-1)^((n-1)//2))
    [A137447(n) for n in range(51)] # G. C. Greubel, Sep 15 2023

Formula

G.f.: (1+4*x-2*x^2-12*x^3)/(4*x^4-1). - Harvey P. Dale, Jun 27 2011
From Bruno Berselli, Nov 02 2011: (Start)
a(n) = (1-(-1)^n-2*(3-2*(-1)^n)*(-1)^floor(n/2))*2^(floor(n/2)-1).
a(2n) = -A122803(n).
a(2n+1) = (-1)^(n+1)*A084221(n+2). (End)
E.g.f.: (1/sqrt(2))*( sinh(sqrt(2)*x) - 5*sin(sqrt(2)*x) - sqrt(2)*cos(sqrt(2)*x) ). - G. C. Greubel, Sep 15 2023

Extensions

More terms from Harvey P. Dale, Jun 27 2011

A140589 Triangle A(k,n) = (-2)^k+2^n read by rows.

Original entry on oeis.org

2, -1, 0, 5, 6, 8, -7, -6, -4, 0, 17, 18, 20, 24, 32, -31, -30, -28, -24, -16, 0, 65, 66, 68, 72, 80, 96, 128, -127, -126, -124, -120, -112, -96, -64, 0, 257, 258, 260, 264, 272, 288, 320, 384, 512, -511, -510, -508, -504, -496, -480, -448, -384, -256, 0, 1025, 1026, 1028, 1032
Offset: 0

Views

Author

Paul Curtz, Jul 06 2008

Keywords

Comments

The flattened sequence a(A000217(k)+j)=A(k,j) obeys a(n+1)-2a(n)= -5, 2, 5, -4, -4, -23, 8, 8, 8, 17, -16, -16, -16, -16, -95, ..., which is a dispersion of 2, -4, -4, 8, 8, 8, ... (a signed version of A140513) with -5, 5, -23, 17, -95, 65,... The latter sequence is A(k,0)-2*A(k-1,k-1), an alternation of the negative of A140529 with each second element of A000051.

Examples

			Rows starting at k=0: (2), (-1,0); (5, 6, 8); (-7,-6,-4,0); (17,18,20,24,32);...
		

Formula

A(k,n) = A000079(n)+A122803(k).

Extensions

Edited by R. J. Mathar, Jul 08 2008

A239285 a(n) = (15^n - (-2)^n)/17.

Original entry on oeis.org

0, 1, 13, 199, 2977, 44671, 670033, 10050559, 150758257, 2261374111, 33920611153, 508809168319, 7632137522737, 114482062845151, 1717230942669073, 25758464140052479, 386376962100754417, 5795654431511381791, 86934816472670595793, 1304022247090059199039
Offset: 0

Views

Author

Felix P. Muga II, Mar 14 2014

Keywords

Comments

Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1.
The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2 = (k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1| < 1. Thus, a(n+1)/a(n) converges to r1 as n approaches infinity.
Note that limit a(n+1)/a(n) = 15 with k=13 and t=30.
If n > 20, then |a(n+1)/a(n) - 15| < 10^(-16).
Let b(n) be the number of strings of length n containing the 13-ary digits: 0,...,9,A,B,C or the 30 two-consecutive digits D0,D1,...,D9,DA,...,DT where A corresponds to 10, ..., T corresponds to 29. Then b(0)=1=a(2) and b(1)=13=a(3). The strings q_1q_2...q_n of length n can be partitioned into 2 groups A and B where A contains the strings where q_1=0,1,...,9,A,B,C and B contains the strings where q_1=D. Thus, |A|=13*b(n-1) and |B|=30*b(n-2). Hence, b(n) = 13*b(n-1) + 30*b(n-2) for n>1. Since b(0)=a(2) and b(1)=a(3), we can show that b(n) = a(n+2).

Crossrefs

Programs

  • Magma
    [(15^n -(-2)^n)/17: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    CoefficientList[Series[x/(1-13*x-30*x^2), {x,0,50}], x] (* or *) Table[
    (15^n - (-2)^n)/17, {n,0,30}] (* or *) LinearRecurrence[{13,30}, {0,1}, 30] (* G. C. Greubel, May 26 2018 *)
  • PARI
    a(n) = (15^n-(-2)^n)/17; \\ Michel Marcus, Mar 16 2014
    
  • PARI
    x='x+O('x^30); concat([0], Vec()) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: x/(1 - 13*x - 30*x^2).
a(n) = 13*a(n-1) + 30*a(n-2) for n >= 2, a(0)=0, a(1)=1.
a(n) = (1/17)*(A001024(n) - A122803(n)), n >= 0.
a(0)=0, a(n) = Sum_{k=0..n-1} A001024(k)*A122803(n-1-k) for n > 0.
E.g.f.: (exp(15*x) - exp(-2*x))/17. - G. C. Greubel, May 26 2018

A351401 Decimal expansion of erfi(1)/e, where erfi is the imaginary error function.

Original entry on oeis.org

6, 0, 7, 1, 5, 7, 7, 0, 5, 8, 4, 1, 3, 9, 3, 7, 2, 9, 1, 1, 5, 0, 3, 8, 2, 3, 5, 8, 0, 0, 7, 4, 4, 9, 2, 1, 1, 6, 1, 2, 2, 0, 9, 2, 8, 6, 6, 5, 1, 5, 6, 9, 1, 5, 9, 1, 6, 9, 4, 4, 1, 9, 1, 9, 2, 7, 2, 0, 8, 7, 6, 9, 4, 9, 2, 0, 2, 8, 1, 1, 8, 2, 0, 1, 6, 3, 9, 1, 3, 1, 6, 5, 2, 6, 3, 3, 2, 6, 8, 5, 4, 8, 1, 0, 4
Offset: 0

Views

Author

Amiram Eldar, Feb 10 2022

Keywords

Comments

The alternating sum of reciprocals of the factorials of the positive half-integers.

Examples

			0.60715770584139372911503823580074492116122092866515...
		

References

  • Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei Rogosin, Mittag-Leffler Functions, Related Topics and Applications, New York, NY: Springer, 2020. See p. 94, eq. (4.12.9.6).
  • Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Fractional Differential Equations, Introduction to Fractional Differential Equations, Springer, Cham, 2019. See p. 12, eq. (1.9).

Crossrefs

Programs

  • Maple
    evalf(exp(-1)*erfi(1), 120);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    RealDigits[Erfi[1]/E, 10, 100][[1]]
  • PARI
    real(-I*(1.0-erfc(I)))/exp(1) \\ Michel Marcus, Feb 10 2022

Formula

Equals Sum_{k>=0} (-1)^k/(k + 1/2)! = Sum_{k>=1} (-1)^(k+1)/Gamma(k + 1/2).
Equals E_{1, 3/2}(-1), where E_{a,b}(z) is the two-parameter Mittag-Leffler function.
Equals (-1/sqrt(Pi)) * Sum_{k>=1} (-2)^k/(2*k-1)!!.
Equals A068985 * A099288.

A210239 Triangle, read by rows, given by (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 2, 2, 5, 3, 2, 9, 12, 5, 2, 13, 28, 25, 8, 2, 17, 52, 74, 50, 13, 2, 21, 84, 167, 177, 96, 21, 2, 25, 124, 320, 470, 397, 180, 34, 2, 29, 172, 549, 1041, 1211, 850, 331, 55, 2, 33, 228, 870, 2034, 3042, 2928, 1758, 600, 89
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2012

Keywords

Examples

			Triangle begins :
1
2, 2
2, 5, 3
2, 9, 12, 5
2, 13, 28, 25, 8
2, 17, 52, 74, 50, 13
2, 21, 84, 167, 177, 96, 21
2, 25, 124, 320, 470, 397, 180, 34
		

Crossrefs

Cf. A000045, A026150, A112087 (3rd column, n>2).

Formula

G.f.: (1+x+y*x)/(1-x-y*x-y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A122803(n), A000007(n), A040000(n), A026150(n+1) for x = -2, -1, 0, 1 respectively.
T(n,n) = Fibonacci(n+2) = A000045(n+2), T(n+1,n) = A067331(n).

A352692 a(n) + a(n+1) = 2^n for n >= 0 with a(0) = 4.

Original entry on oeis.org

4, -3, 5, -1, 9, 7, 25, 39, 89, 167, 345, 679, 1369, 2727, 5465, 10919, 21849, 43687, 87385, 174759, 349529, 699047, 1398105, 2796199, 5592409, 11184807, 22369625, 44739239, 89478489, 178956967, 357913945, 715827879, 1431655769, 2863311527, 5726623065, 11453246119, 22906492249
Offset: 0

Views

Author

Paul Curtz, Mar 29 2022

Keywords

Comments

Difference table D(n,k) = D(n-1,k+1) - D(n-1,k), D(0,k) = a(k):
4, -3, 5, -1, 9, 7, 25, ...
-7, 8, -6, 10, -2, 18, 14, 50, ...
15, -14, 16, -12, 20, -4, 36, 28, 100, ...
-29, 30, -28, 32, -24, 40, -8, 72, 56, 200, ...
59, -58, 60, -56, 64, -48, 80, -16, 144, 112, 400, ...
...
The diagonals are given by D(n,n+k) = a(k)*2^n.
D(n,1) = -(-1)^n* A340627(n).
a(n) - a(n) = 0, 0, 0, 0, 0, ... (trivially)
a(n+1) + a(n) = 1, 2, 4, 8, 16, ... = 2^n (by definition)
a(n+2) - a(n) = 1, 2, 4, 8, 16, ... = 2^n
a(n+3) + a(n) = 3, 6, 12, 24, 48, ... = 2^n*3
a(n+4) - a(n) = 5, 10, 20, 40, 80, ... = 2^n*5
a(n+5) + a(n) = 11, 22, 44, 88, 176, ... = 2^n*11
(...)
This table is given by T(r,n) = A001045(r)*2^n with r, n >= 0.
Sums of antidiagonals are A045883(n).
Main diagonal: A192382(n).
First upper diagonal: A054881(n+1).
First subdiagonal: A003683(n+1).
Second subdiagonal: A246036(n).
Now consider the array from c(n) = (-1)^n*a(n) with its difference table:
4, 3, 5, 1, 9, -7, 25, -39, ... = c(n)
-1, 2, -4, 8, -16, 32, -64, 128, ... = -A122803(n)
3, -6, 12, -24, 48, -96, 192, -384, ... =
-9, 18, -36, 72, -144, 288, -576, 1152, ...
27, -54, 108, -216, 432, -864, 1728, -3456, ...
...
The first subdiagonal is -A000400(n). The second is A169604(n).

Crossrefs

If a(0) = k then A001045 (k=0), A078008 (k=1), A140966 (k=2), A154879 (k=3), this sequence (k=4).
Essentially the same as A115335.

Programs

  • Maple
    a := proc(n) option remember; ifelse(n = 0, 4, 2^(n-1) - a(n-1)) end: # Peter Luschny, Mar 29 2022
    A352691 := proc(n)
        (11*(-1)^n + 2^n)/3
    end proc: # R. J. Mathar, Apr 26 2022
  • Mathematica
    LinearRecurrence[{1, 2}, {4, -3}, 40] (* Amiram Eldar, Mar 29 2022 *)
  • PARI
    a(n) = (11*(-1)^n + 2^n)/3; \\ Thomas Scheuerle, Mar 29 2022

Formula

abs(a(n)) = A115335(n-1) for n >= 1.
a(3*n) - (-1)^n*4 = A132805(n).
a(3*n+1) + (-1)^n*4 = A082311(n).
a(3*n+2) - (-1)^n*4 = A082365(n).
From Thomas Scheuerle, Mar 29 2022: (Start)
G.f.: (-4 + 7*x)/(-1 + x + 2*x^2).
Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(m + 2*n-k) = a(m)*2^n.
Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(1 + n-k) = -(-1)^n*A340627(n).
a(n) = (11*(-1)^n + 2^n)/3.
a(n + 2*m) = a(n) + A002450(m)*2^n.
a(2*n) = A192382(n+1) + (-1)^n*a(n).
a(n) = ( A045883(n) - Sum_{k=0..n-1}(-1)^k*a(k) )/n, for n > 0. (End)
a(n) = A001045(n) + 4*(-1)^n.
a(n+1) = 2*a(n) -11*(-1)^n.
a(n+2) = a(n) + 2^n.
a(n+4) = a(n) + A020714(n).
a(n+6) = a(n) + A175805(n).
a(2*n) = A163868(n).
a(2*n+1) = (2^(2*n+1) - 11)/3.

Extensions

Warning: The DATA is correct, but there may be errors in the COMMENTS, which should be rechecked. - Editors of OEIS, Apr 26 2022
Edited by M. F. Hasler, Apr 26 2022.

A370627 a(n) = 2^(n - 1)*((-1)^(n + 1) + 7*2^n)/3 = 2^(n - 1)*A062092(n).

Original entry on oeis.org

1, 5, 18, 76, 296, 1200, 4768, 19136, 76416, 305920, 1223168, 4893696, 19572736, 78295040, 313171968, 1252704256, 5010784256, 20043202560, 80172679168, 320690978816, 1282763390976, 5131054612480, 20524216352768, 82096869605376, 328387470032896, 1313549896908800, 5254199554080768
Offset: 0

Views

Author

Paul Curtz, Jul 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 8}, {1, 5}, 27] (* Amiram Eldar, Jul 03 2024 *)
  • PARI
    a(n) = 2^(n-1)*((-1)^(n+1) + 7*2^n)/3 \\ Thomas Scheuerle, Jul 03 2024

Formula

Binomial transform of A133125.
G.f.: (1 + 3*x)/(1 - 2*x - 8*x^2).
E.g.f.: (1/3)*exp(x)*(3*exp(3*x) + sinh(3*x)).
a(n) = 2*a(n-1) + 8*a(n-2), for n > 1.
a(n) = 4*a(n-1) + (-2)^n, for n > 0.
a(n) = (a(n+2) - 2*a(n+1))/8.
From Thomas Scheuerle, Jul 03 2024: (Start)
a(n) = 2^(n - 1)*((-1)^(n + 1) + 7*2^n)/3.
a(n) = A003683(n) + 4^n.
a(n) = A255470(2^n - 1) - A255470(2^(n-1) - 1) = A255471(n) - A255471(n-1), for n > 0. (End)
Binomial transform: A108982.
Previous Showing 31-37 of 37 results.