cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A102681 Number of digits >= 8 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007094 (numbers in base 8). - Bernard Schott, Feb 18 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=8 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(8*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A025658 Exponent of 6 (value of j) in n-th number of form 4^i*6^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 4, 1, 2, 3, 0, 4, 1, 5, 2, 3, 0, 4, 1, 5, 2, 6, 3, 0, 4, 1, 5, 2, 6, 3, 0, 7, 4, 1, 5, 2, 6, 3, 0, 7, 4, 1, 8, 5, 2, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 10, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 10, 0, 7, 4, 11, 1, 8, 5, 2, 9, 6, 3, 10, 0, 7, 4, 11, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Differs from A025673 at a(2805).

Programs

  • Mathematica
    With[{max = 10^10}, IntegerExponent[Sort[Flatten[Table[4^i*6^j, {i, 0, Log[4, max]}, {j, 0, Log[6, max/4^i]}]]], 6]] (* Amiram Eldar, Jul 09 2025 *)

Formula

a(n) = A122841(A025618(n)). - Amiram Eldar, Jul 09 2025

A025661 Exponent of 6 (value of i) in n-th number of form 6^i*8^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 8, 0, 7, 6, 5, 4, 3, 2, 9, 1, 8, 0, 7, 6, 5, 4, 3, 10, 2, 9, 1, 8, 0, 7, 6, 5, 4, 11, 3, 10, 2, 9, 1, 8, 0, 7, 6, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0, 7, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0, 7, 14, 6, 13
Offset: 1

Views

Author

Keywords

Crossrefs

Differs from A025646 at a(1881).

Programs

  • Mathematica
    With[{max = 10^12}, IntegerExponent[Sort[Flatten[Table[6^i*8^j, {i, 0, Log[6, max]}, {j, 0, Log[8, max/6^i]}]]], 6]] (* Amiram Eldar, Jul 09 2025 *)

Formula

a(n) = A122841(A025627(n)). - Amiram Eldar, Jul 09 2025

A102677 Number of digits >= 6 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007092 (numbers in base 6). - Bernard Schott, Feb 02 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=6 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Total@ Take[Most@ DigitCount@ n, -4], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 2/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(6*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A244414 Remove highest power of 6 from n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 2, 13, 14, 15, 16, 17, 3, 19, 20, 21, 22, 23, 4, 25, 26, 27, 28, 29, 5, 31, 32, 33, 34, 35, 1, 37, 38, 39, 40, 41, 7, 43, 44, 45, 46, 47, 8, 49, 50, 51, 52, 53, 9, 55, 56, 57, 58, 59, 10, 61, 62, 63, 64, 65, 11
Offset: 1

Views

Author

Wolfdieter Lang, Jun 27 2014

Keywords

Comments

This is instance g = 6 of the g-family of sequences, call it r(g,n), where for g >= 2 the highest power of g is removed from n. See the crossrefs.
The present sequence is not multiplicative: a(6) = 1 not a(2)*a(3) = 6. In the prime factor decomposition one has to consider a(2^e2*3^e^3) as one entity, also for e2 >= 0, e3 >= 0 with a(1) = 1, and apply the rule given in the formula section. With this rule the sequence will be multiplicative in an unusual sense. - Wolfdieter Lang, Feb 12 2018

Examples

			a(1) = 1 = 1/6^A122841(1) = 1/6^0.
a(9) = a(2^0*3^2), min(0,2) = 0, a(9) = 2^(0-0)*3^(2-0) = 1*9 = 9.
a(12) = a(2^2*3^1), m = min(2,1) = 1, a(12) = 2^(2-1)*3^(1-1) = 2^1*1 = 2.
a(30) = a(2*3*5) = a(2^1*3^1)*a(5) = 1*a(5) = 5.
		

Crossrefs

A007310, A007913, A008833 are used to express relationship between terms of this sequence.

Programs

  • Mathematica
    a[n_] := n/6^IntegerExponent[n, 6]; Array[a, 66] (* Robert G. Wilson v, Feb 12 2018 *)
  • PARI
    a(n) = n/6^valuation(n,6); \\ Joerg Arndt, Jun 28 2014

Formula

a(n) = n/6^A122841(n), n >= 1.
For n >= 2, a(n) is sort of multiplicative if a(2^e2*3^e3) = 2^(e2 - m)*3^(e3 - m) with m = m(e2, e3) = min(e2, e3), for e2, e3 >= 0, a(1) = 1, and a(p^e) = p^e for primes p >= 5.
From Peter Munn, Jun 04 2020: (Start)
Proximity to being multiplicative may be expressed as follows:
a(n * A007310(k)) = a(n) * a(A007310(k));
a(n^2) = a(n)^2;
a(n) = a(A007913(n)) * a(A008833(n)).
(End)
Sum_{k=1..n} a(k) ~ (3/7) * n^2. - Amiram Eldar, Nov 20 2022

Extensions

Incorrect multiplicity claim corrected by Wolfdieter Lang, Feb 12 2018

A249346 The exponent of the highest power of 6 dividing the product of the elements on the n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 4, 0, 0, 10, 10, 4, 13, 8, 3, 0, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 16, 47, 22, 26, 0, 30, 48, 33, 18, 73, 56, 39, 40, 42, 24, 47, 28, 9, 54, 57, 16, 62, 40, 18, 46, 23, 0, 82, 32, 84, 94, 87, 44, 92, 52, 36, 0, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 31 2014

Keywords

Comments

Sounds good with MIDI player set to FX-7.

Crossrefs

Minimum of terms A187059(n) and A249343(n).

Programs

  • Haskell
    a249346 = a122841 . a001142  -- Reinhard Zumkeller, Mar 16 2015
  • Mathematica
    IntegerExponent[#,6]&/@Times@@@Table[Binomial[n,k],{n,0,80},{k,0,n}] (* Harvey P. Dale, Nov 21 2023 *)
  • PARI
    A249346(n) = { my(b, s2, s3); s2 = 0; s3 = 0; for(k=0, n, b = binomial(n, k); s2 += valuation(b, 2); s3 += valuation(b, 3)); min(s2,s3); };
    for(n=0, 7775, write("b249346.txt", n, " ", A249346(n)));
    
  • Scheme
    (define (A249346 n) (min (A187059 n) (A249343 n)))
    
  • Scheme
    (define (A249346 n) (A122841 (A001142 n)))
    

Formula

a(n) = min(A187059(n), A249343(n)).
a(n) = A122841(A001142(n)).
Other identities:
a(n) = 0 when A249151(n) < 3.

A102684 Number of times the digit 9 appears in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

This is the total number of digits = 9 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..105); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Accumulate[DigitCount[Range[0,100],10,9]] (* Harvey P. Dale, Mar 30 2018 *)
  • PARI
    a(n) = sum(k=0, n, #select(x->(x==9), digits(k))); \\ Michel Marcus, Oct 03 2023

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 1/10)*(2n + 2 - (4/5 + floor(n/10^j + 1/10))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102683(n) + (1/2)*Sum_{j=1..m+1} ((-4/5*floor(n/10^j + 1/10) + floor(n/10^j))*10^j - (floor(n/10^j + 1/10)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = m*10^(m-1).
(this is total number of digits = 9 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005
Definition revised by N. J. A. Sloane, Mar 30 2018

A214681 a(n) is obtained from n by removing factors of 2 and 3 that do not contribute to a factor of 6.

Original entry on oeis.org

1, 1, 1, 1, 5, 6, 7, 1, 1, 5, 11, 6, 13, 7, 5, 1, 17, 6, 19, 5, 7, 11, 23, 6, 25, 13, 1, 7, 29, 30, 31, 1, 11, 17, 35, 36, 37, 19, 13, 5, 41, 42, 43, 11, 5, 23, 47, 6, 49, 25, 17, 13, 53, 6, 55, 7, 19, 29, 59, 30, 61, 31, 7, 1, 65, 66, 67, 17, 23, 35, 71, 36
Offset: 1

Views

Author

Tom Edgar, Jul 25 2012

Keywords

Comments

In this sequence, the number 6 exhibits some characteristics of a prime number since we have removed extraneous 2's and 3's from the prime factorizations of numbers.

Examples

			For n=4, v_2(4)=2, v_3(4)=0, and v_6(4)=0, so a(4) = 4*1/(4*1) = 1.
For n=36, v_2(36)=2, v_3(36)=2, and v_6(36)=2, so a(36) = 36*36/(4*9) = 36.
For n=17, a(17) = 17 since 17 has no factors of 6, 2 or 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local i, m, r; m:=n;
          for i from 0 while irem(m, 6, 'r')=0 do m:=r od;
          while irem(m, 2, 'r')=0 do m:=r od;
          while irem(m, 3, 'r')=0 do m:=r od;
          m*6^i
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 04 2013
  • Mathematica
    With[{v = IntegerExponent}, a[n_] := n*6^v[n, 6]/2^v[n, 2]/3^v[n, 3]; Array[a, 100]] (* Amiram Eldar, Dec 09 2020 *)
  • Sage
    n=100 #change n for more terms
    C=[]
    b=6
    P = factor(b)
    for i in [1..n]:
        prod = 1
        for j in range(len(P)):
            prod = prod * ((P[j][0])^(Integer(i).valuation(P[j][0])))
        C.append((b^(Integer(i).valuation(b)) * i) /prod)

Formula

a(n) = n*6^(v_6(n))/(2^(v_2(n))*3^(v_3(n))), where v_k(n) is the k-adic valuation of n, that is v_k(n) gives the largest power of k, a, such that k^a divides n.
Sum_{k=1..n} a(k) ~ (7/24) * n^2. - Amiram Eldar, Dec 25 2023

A322317 Ordinal transform of A322316.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 4, 5, 1, 6, 2, 7, 3, 6, 7, 8, 1, 9, 8, 2, 4, 10, 2, 11, 1, 9, 10, 12, 1, 13, 11, 12, 3, 14, 3, 15, 5, 6, 13, 16, 1, 17, 14, 15, 7, 18, 2, 19, 4, 16, 17, 20, 3, 21, 18, 8, 1, 22, 4, 23, 9, 19, 20, 24, 1, 25, 21, 22, 10, 26, 5, 27, 2, 3, 23, 28, 4, 29, 24, 25, 5, 30, 5, 31, 11, 26, 27, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    A122841(n) = min(A007814(n), A007949(n));
    A244417(n) = max(valuation(n,2), valuation(n,3));
    v322316 = rgs_transform(vector(up_to, n, [A122841(n), A244417(n)]));
    v322317 = ordinal_transform(v322316);
    A322317(n) = v322317[n];

A339748 a(n) = (6^(valuation(n, 6) + 1) - 1) / 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 43, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 43, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 15 2020

Keywords

Comments

Sum of powers of 6 dividing n.

Crossrefs

Programs

  • Mathematica
    Table[(6^(IntegerExponent[n, 6] + 1) - 1)/5, {n, 1, 100}]
    nmax = 100; CoefficientList[Series[Sum[6^k x^(6^k)/(1 - x^(6^k)), {k, 0, Floor[Log[6, nmax]] + 1}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=0} 6^k * x^(6^k) / (1 - x^(6^k)).
L.g.f.: -log(Product_{k>=0} (1 - x^(6^k))).
Dirichlet g.f.: zeta(s) / (1 - 6^(1 - s)).
Previous Showing 31-40 of 52 results. Next