cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A242960 Numbers n such that 7^A000010(n) == 1 (mod n^2).

Original entry on oeis.org

4, 5, 10, 20, 40, 80, 491531, 983062, 1966124, 2457655, 3932248, 4915310, 6389903, 9339089, 9830620, 12288275, 12779806, 18678178, 19169709, 19661240, 24576550, 25559612, 28017267, 31949515, 37356356, 38339418, 39322480, 46695445, 49153100, 51119224, 56034534
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Crossrefs

Cf. A077816, A242959, A000010. All primes in this sequence are in A123693.

Programs

  • PARI
    for(n=2, 10^9, if(Mod(7, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

Terms a(23) and beyond from Giovanni Resta, Jan 24 2020

A242741 Primes p such that p^2 divides 15^(p-1) - 1.

Original entry on oeis.org

29131, 119327070011
Offset: 1

Views

Author

Felix Fröhlich, May 21 2014

Keywords

Comments

Base 15 Wieferich primes. According to Richard Fischer there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[15, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(15, n^2)^(n-1)==1, print1(n, ", ")));

A242982 Primes p such that p^2 divides 20^(p-1) - 1.

Original entry on oeis.org

281, 46457, 9377747, 122959073
Offset: 1

Views

Author

Felix Fröhlich, May 28 2014

Keywords

Comments

Base 20 Wieferich primes. According to Richard Fischer, there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[20, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(20, n^2)^(n-1)==1, print1(n, ", ")));

A244260 Primes p such that p^2 divides 18^(p-1) - 1.

Original entry on oeis.org

5, 7, 37, 331, 33923, 1284043
Offset: 1

Views

Author

Felix Fröhlich, Jun 24 2014

Keywords

Comments

Base 18 Wieferich primes. According to Richard Fischer there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[18, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(18, n^2)^(n-1)==1, print1(n, ", ")));

A243089 Pseudoprimes to base 7 that are not squarefree.

Original entry on oeis.org

25, 325, 1825, 4525, 4825, 10225, 12025, 16725, 20425, 30025, 35425, 58825, 177025, 216525, 265525, 352225, 526825, 611425, 675925, 710425, 717025, 746425, 772525, 784225, 834025, 877825, 1125825, 1126225, 1439425, 1491025, 1579225, 1935025, 1973425, 2176525
Offset: 1

Views

Author

Felix Fröhlich, Aug 18 2014

Keywords

Comments

Any term is divisible by the square of a base 7 Wieferich prime (A123693).
Intersection of A005938 and A013929. - Michel Marcus, Aug 21 2014

Crossrefs

Programs

  • PARI
    forcomposite(n=1, 1e9, if(Mod(7, n)^(n-1)==1, if(!issquarefree(n), print1(n, ", "))))

A298951 Wieferich primes to base 22.

Original entry on oeis.org

13, 673, 1595813, 492366587, 9809862296159
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 30 2018

Keywords

Comments

Prime numbers p such that p^2 divides 22^(p-1) - 1.
Next term, if it exists, is larger than 8.72*10^13.
492366587 was found by Montgomery (cf. Montgomery, 1993). - Felix Fröhlich, Jan 30 2018

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), this sequence (b=22), A128669 (b=23), A306255 (b=26), A306256 (b=30).

Programs

  • PARI
    forprime(p=1, , if(Mod(22, p^2)^(p-1)==1, print1(p, ", ")))

A306255 Wieferich primes to base 26.

Original entry on oeis.org

3, 5, 71, 486999673, 6695256707
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 26^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), this sequence (b=26), A306256 (b=30).

Programs

  • Mathematica
    Select[Prime[Range[26*10^6]],PowerMod[26,#-1,#^2]==1&] (* The program generates the first 4 terms of the sequence. *) (* Harvey P. Dale, Aug 23 2024 *)
  • PARI
    forprime(p=2, , if(Mod(26, p^2)^(p-1)==1, print1(p, ", ")))

A306256 Wieferich primes to base 30.

Original entry on oeis.org

7, 160541, 94727075783
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 30^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), A306255 (b=26), this sequence (b=30).

Programs

  • PARI
    forprime(p=2, , if(Mod(30, p^2)^(p-1)==1, print1(p, ", ")))

A247072 Smallest Wieferich prime (> sqrt(n)) in base n.

Original entry on oeis.org

2, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 487, 71, 2693, 863, 29, 29131, 1093, 46021, 5, 7, 281
Offset: 1

Views

Author

Eric Chen, Nov 16 2014

Keywords

Comments

a(n) = Smallest prime such that n appears in A143548. - Eric Chen, Nov 26 2014
The square of a(n) is the smallest squared prime that is a pseudoprime (> n) in base n; for example, a(2) = 1093, and 1093^2 = 1194649 is the smallest squared prime that is pseudoprime in base 2. - Eric Chen, Nov 26 2014
Is a(n) defined for all n? - Eric Chen, Nov 26 2014
Does every prime appear in this sequence? - Eric Chen, Nov 26 2014
a(22)..a(28) = {13, 13, 5, 20771, 71, 11, 19}, a(30)..a(46) = {7, 7, 1093, 233, 46145917691, 1613, 66161, 77867, 17, 8039, 11, 29, 23, 103, 229, 1283, 829}, a(48)..a(49) = {7, 491531}, a(51)..a(60) = {41, 461, 47, 19, 30109, 647, 47699, 131, 2777, 29}, a(62)..a(71) = {19, 23, 1093, 17, 89351671, 47, 19, 19, 13, 47}, a(74)..a(81) = {1251922253819, 17, 37, 32687, 43, 263, 13, 11}, a(83)..a(100) = {4871, 163, 11779, 68239, 1999, 2535619637, 13, 6590291053, 293, 727, 509, 11, 2137, 109, 2914393, 28627, 13, 487}; a(n) is currently unknown for n = {21, 29, 47, 50, 61, 72, 73, 82, 126, 132, 154, 186, 187, 188, 200, 203, 222, 231, 237, 301, 304, 309, 311, 327, 335, 347, 351, 355, 357, 435, 441, 454, 458, 496, 541, 542, 546, 554, 570, 593, 609, 610, 639, 640, 654, 662, 668, 674, 692, 697, 698, 701, 718, 724, 725, 727, 733, 743, 760, 772, 775, 777, 784, 798, 807, 808, 812, 829, 841, 858, 860, 871, 883, 912, 919, 944, 980, 983, 986, ...}. - Eric Chen, Nov 26 2014
a(21) > 3.4 * 10^13. - Eric Chen, Nov 26 2014

Examples

			a(12) = 2693 because the Wieferich primes to base 12 are 2693, 123653, ..., and 2693 is greater than sqrt(12), so a(12) = 2693.
a(17) = 46021 because the Wieferich primes to base 17 are 2, 3, 46021, 48947, 478225523351, ..., but neither 2 nor 3 is greater than sqrt(17), so a(17) = 46021.
		

Crossrefs

Programs

  • Mathematica
    a247072[n_] := Block[{p = Int[Sqrt[n]]+1}, While[!PrimeQ[p] || [p < 10^8 && PowerMod[n, p - 1, p^2] != 1], p++]; If[p == 10^8, 0, p]]; Table[ a247072[n], {n, 100}] (* Eric Chen, Nov 27 2014 *)
  • PARI
    a(n)=forprime(p=sqrtint(n)+1,,if(Mod(n^(p-1),p^2)==1,return(p)))
    n=1; while(n<101, print1(a(n), ", "); n++) \\ Charles R Greathouse IV, Nov 16 2014

A331424 Prime numbers p such that p^2 divides 31^(p-1) - 1.

Original entry on oeis.org

7, 79, 6451, 2806861
Offset: 1

Views

Author

Seiichi Manyama, Jan 16 2020

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A123693 (b=7), A128667 (b=13), A128668 (b=17), A090968 (b=19), A128669 (b=23), this sequence (b=31), A331426 (b=37), A331427 (b=41).
Cf. A039951.

Programs

  • Mathematica
    Select[Range[3*10^6], PrimeQ[#] && PowerMod[31, # - 1, #^2] == 1 &] (* Amiram Eldar, May 05 2021 *)
  • PARI
    forprime(p=2, 1e8, if(Mod(31, p^2)^(p-1)==1, print1(p", ")))
Previous Showing 11-20 of 24 results. Next