cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A096948 Triangular table read by rows: T(n,m) = number of rectangles found in an n X m rectangle built from 1 X 1 squares, 1 <= m <= n.

Original entry on oeis.org

1, 3, 9, 6, 18, 36, 10, 30, 60, 100, 15, 45, 90, 150, 225, 21, 63, 126, 210, 315, 441, 28, 84, 168, 280, 420, 588, 784, 36, 108, 216, 360, 540, 756, 1008, 1296, 45, 135, 270, 450, 675, 945, 1260, 1620, 2025, 55, 165, 330, 550, 825, 1155, 1540, 1980, 2475, 3025
Offset: 1

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

Table of products of triangular numbers A000217.
Because of symmetry it is sufficient to consider n X m rectangles with n >= m. A square is a special rectangle.

Examples

			T(2,2) = 9 because in a 2 X 2 square there are four 1 X 1 squares, two 1 X 2 rectangles, two 2 X 1 rectangles and one 2 X 2 square: 4 + 2 + 2 + 1 =9.
T(3,2) = 18 = t(3)*t(2) because in a 3 X 2 rectangle there are six 1 X 1 squares, three 1 X 2 rectangles, four 2 X 1 rectangles, two 3 X 1 rectangles, two 2 X 2 squares and one 3 X 2 rectangle: 6 + 3 + 4 + 2 + 2 + 1 = 9 + 9 = 18.
Triangle begins:
   1,
   3,   9,
   6,  18,  36,
  10,  30,  60, 100,
  15,  45,  90, 150, 225,
  21,  63, 126, 210, 315, 441,
  28,  84, 168, 280, 420, 588, 784,
  36, 108, 216, 360, 540, 756,1008,1296,
  45, 135, 270, 450, 675, 945,1260,1620,2025,
  55, 165, 330, 550, 825,1155,1540,1980,2475,3025,
  (...)
		

Crossrefs

Cf. A000217 (1st column), A045943 (2nd column), A028896 (3rd column), A124080 (4th col).

Programs

Formula

T(n, m) = t(n)*t(m) if n>=m else 0, with the triangular numbers t(n):= A000217(n), n>=1.
G.f. for column m (without leading zeros): t(m)*(x/(1-x)^3 - Sum_{k=0..m-1} t(k)*x^k)/x^m, m>=1.

Extensions

Name edited by M. F. Hasler, Oct 22 2020

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022

A326122 a(n) = 10 * sigma(n).

Original entry on oeis.org

10, 30, 40, 70, 60, 120, 80, 150, 130, 180, 120, 280, 140, 240, 240, 310, 180, 390, 200, 420, 320, 360, 240, 600, 310, 420, 400, 560, 300, 720, 320, 630, 480, 540, 480, 910, 380, 600, 560, 900, 420, 960, 440, 840, 780, 720, 480, 1240, 570, 930, 720, 980, 540, 1200, 720, 1200, 800, 900, 600, 1680, 620, 960
Offset: 1

Views

Author

Omar E. Pol, Jul 13 2019

Keywords

Comments

10 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every 36-degree-three-dimensional sector arises after the 36-degree-zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a 10-pointed star formed by 10 rhombuses (see Links section).

Crossrefs

Programs

  • GAP
    List([1..70],n->10*Sigma(n)); # After Muniru A Asiru
    
  • Magma
    [10*DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Jul 26 2019
  • Maple
    with(numtheory): seq(10*sigma(n), n=1..64);
  • Mathematica
    10*DivisorSigma[1,Range[70]] (* After Harvey P. Dale *)
  • PARI
    a(n) = 10 * sigma(n);
    

Formula

a(n) = 10*A000203(n) = 5*A074400(n) = 2*A274535(n).
a(n) = A000203(n) + A325299(n) = A074400(n) + A319528(n).
Dirichlet g.f.: 10*zeta(s-1)*zeta(s). - (After Ilya Gutkovskiy)

A386485 a(0) = 1; thereafter a(n) = 5*n^2 - 5*n + 2.

Original entry on oeis.org

1, 2, 12, 32, 62, 102, 152, 212, 282, 362, 452, 552, 662, 782, 912, 1052, 1202, 1362, 1532, 1712, 1902, 2102, 2312, 2532, 2762, 3002, 3252, 3512, 3782, 4062, 4352, 4652, 4962, 5282, 5612, 5952, 6302, 6662, 7032, 7412, 7802, 8202, 8612, 9032, 9462, 9902, 10352, 10812, 11282, 11762, 12252, 12752, 13262, 13782, 14312
Offset: 0

Views

Author

N. J. A. Sloane, Aug 18 2025

Keywords

Comments

Maximum number of regions that can be formed in the plane by drawing n regular pentagons (of any size). Differs from A062786 and A124080 by a small constant shift, but is included here because of its geometrical applications.

Crossrefs

Programs

  • Mathematica
    A386485[n_] := If[n == 0, 1, 5*n*(n - 1) + 2]; Array[A386485, 60, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 2, 12, 32}, 60] (* Paolo Xausa, Aug 18 2025 *)

Formula

G.f.: -(x^3+9*x^2-x+1)/(x-1)^3.
Previous Showing 11-15 of 15 results.