cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A081353 Diagonal of square maze arrangement of natural numbers A081349.

Original entry on oeis.org

3, 5, 13, 19, 31, 41, 57, 71, 91, 109, 133, 155, 183, 209, 241, 271, 307, 341, 381, 419, 463, 505, 553, 599, 651, 701, 757, 811, 871, 929, 993, 1055, 1123, 1189, 1261, 1331, 1407, 1481, 1561, 1639, 1723, 1805, 1893, 1979, 2071, 2161, 2257, 2351, 2451, 2549
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Crossrefs

Bisections are in A054554, A125202.

Programs

Formula

a(n) = (n+1)*(n+2)+(-1)^n = 2*binomial(n+2,2)+(-1)^n.
G.f.: (3-x)*(1+x^2)/((1-x)^3*(1+x)). [Colin Barker, Sep 03 2012]
From Wesley Ivan Hurt, Aug 09 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4), n>4.
a(n) = n^2+3n+3 if n is even, otherwise n^2+3n+1.
a(n) = A137932(n+3) - A109613(n+1). (End)

A185669 a(n) = 4*n^2 + 3*n + 2.

Original entry on oeis.org

2, 9, 24, 47, 78, 117, 164, 219, 282, 353, 432, 519, 614, 717, 828, 947, 1074, 1209, 1352, 1503, 1662, 1829, 2004, 2187, 2378, 2577, 2784, 2999, 3222, 3453, 3692, 3939, 4194, 4457, 4728, 5007, 5294, 5589, 5892, 6203, 6522, 6849, 7184, 7527, 7878, 8237, 8604, 8979, 9362, 9753, 10152, 10559, 10974, 11397, 11828
Offset: 0

Views

Author

Paul Curtz, Feb 09 2011

Keywords

Comments

Natural numbers A000027 written clockwise as a square spiral:
.
43--44--45--46--47--48--49
|
42 21--22--23--24--25--26
| | |
41 20 7---8---9--10 27
| | | | |
40 19 6 1---2 11 28
| | | | | |
39 18 5---4---3 12 29
| | | |
38 17--16--15--14--13 30
| |
37--36--35--34--33--32--31
.
Walking in straight lines away from the center:
1, 2, 11, ... = A054552(n) = 1 -3*n+4*n^2,
1, 8, 23, ... = A033951(n) = 1 +3*n+4*n^2,
1, 3, 13, ... = A054554(n+1) = 1 -2*n-4*n^2,
1, 7, 21, ... = A054559(n+1) = 1 +2*n+4*n^2,
1, 4, 15, ... = A054556(n+1) = 1 -n+4*n^2,
1, 6, 19, ... = A054567(n+1) = 1 +n+4*n^2,
1, 5, 17, ... = A053755(n) = 1 +4*n^2,
1, 9, 25, ... = A016754(n) = 1 +4*n+4*n^2 = (1+2*n)^2,
2, 8, 22, ... = 2*A084849(n) = 2 +2*n+4*n^2,
2, 12, 30, ... = A002939(n+1) = 2 +6*n+4*n^2,
2, 9, 24, ... = a(n) = 2 +3*n+4*n^2,
2, 10, 26, ... = A069894(n) = 2 +4*n+4*n^2,
3, 11, 27, ... = A164897(n) = 3 +4*n+4*n^2,
3, 12, 29, ... = A054552(n+1)+1 = 3 +5*n+4*n^2,
3, 14, 33, ... = A033991(n+1) = 3 +7*n+4*n^2,
3, 15, 35, ... = A000466(n+1) = 3 +8*n+4*n^2,
4, 14, 32, ... = 2*A130883(n+1) = 4 +6*n+4*n^2,
4, 16, 36, ... = A016742(n+1) = 4 +8*n+4*n^2 = (2+2*n)^2,
5, 18, 39, ... = A007742(n+1) = 5 +9*n+4*n^2,
5, 19, 41, ... = A125202(n+2) = 5+10*n+4*n^2.

Programs

Formula

a(n) = a(n-1) + 8*n - 1.
a(n) = 2*a(n-1) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (2 +3*x +3*x^2)/(1-x)^3 . - R. J. Mathar, Feb 11 2011
a(n) = A033954(n) + 2. - Bruno Berselli, Apr 10 2011
E.g.f.: (4*x^2 + 7*x + 2)*exp(x). - G. C. Greubel, Jul 09 2017

A271725 T(n,k) is an array read by rows, with n > 0 and k=1..4, where row n gives four prime numbers in increasing order with locations in right angles of each concentric square drawn on a distorted version of the Ulam spiral.

Original entry on oeis.org

3, 7, 17, 19, 13, 23, 37, 41, 307, 359, 401, 419, 13807, 14159, 14401, 14519, 41413, 42023, 42437, 42641, 6317683, 6325223, 6330257, 6332771, 22958473, 22972847, 22982437, 22987229, 39081253, 39100007, 39112517, 39118769, 110617807, 110649359, 110670401, 110680919
Offset: 1

Views

Author

Michel Lagneau, Apr 13 2016

Keywords

Comments

See the illustration for more information.
Conjecture: there is an infinity of concentric squares having a prime number in each right angle. The number 5 is the center of all the squares.
It seems that the drawing of an infinite number of concentric squares having a prime number in each corner is impossible in an Ulam spiral. But with a slight distortion of this space, the problem becomes possible.
The illustration (see the link) shows the new version of a spiral with two remarkable orthogonal diagonals containing four classes of prime numbers given by the sequences A125202, A121326, A028871 and A073337 supported by four line segments. These intersect at a single point represented by the prime number 5.
The sequence of the corresponding length of the sides is {s(k)} = {2, 4, 18, 118, 204, 2514, 4792, 6252, 10518, 14032, 16752, 17598, ...}
The primes are defined by the polynomials: [4*m^2-10*m+7, (2*m-1)^2-2, 4*m^2+1, 4*(m+1)^2-6*(m+1)+1]. The sequence of the corresponding m is {b(k)} = {2, 3, 10, 60, 103, 1258, 2397, 3127, 5260, 7017, 8377, 8800, 10375, 11518, 11523, 12498, 15415, 15888, ...} with the relation b(k) = 1 + s(k)/2.
The array begins:
3, 7, 17, 19;
13, 23, 37, 41;
307, 359, 401, 419;
13807, 14159, 14401, 14519;
41413, 42023, 42437, 42641;
...
Construction of the spiral (see the illustration in the link):
. . . . . . . . . . . .
. 42 41 40 39 38 37 . . .
|
. 43 20 19 18 17 36 35 . .
|
. . 21 6 5 16 15 34 . .
|
. . 22 7 4 3 14 33 . .
. . 23 8 1 2 13 32 . .
. . 24 9 10 11 12 31 . .
. . 25 26 27 28 29 30 . .
. . . . . . . . . . .
The first squares of center 5 having a prime number in each vertex are:
19 18 17 41 40 39 38 37
6 5 16 20 19 18 17 36
7 4 3 21 6 5 16 15 . . . .
22 7 4 3 14
23 8 1 2 13

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do :
      x1:=4*n^2-10*n+7:x2:=(2*n-1)^2-2:
      x3:=4*(n+1)^2-6*(n+1)+1:x4:=4*n^2+1:
       if isprime(x1) and isprime(x2) and isprime(x3) and isprime(x4)
        then
         printf("%d %d %d %d %d \n",n,x1,x2,x4,x3):
        else
        fi:
    od:

A329451 Maximum number of pieces that can be captured during one move on an n X n board according to the international draughts capture rules.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 5, 9, 10, 16, 19, 25, 28, 36, 41, 49, 54, 64, 71, 81, 88, 100, 109, 121, 130, 144, 155, 169, 180, 196, 209, 225, 238, 256, 271, 289, 304, 324, 341, 361, 378, 400, 419, 441, 460, 484, 505, 529, 550, 576, 599, 625, 648, 676, 701, 729, 754, 784
Offset: 0

Views

Author

Stéphane Rézel, Nov 14 2019

Keywords

Comments

Captures are made diagonally, forward and backward. Kings have the long-range capturing capability. During the multiple capture, a piece may pass over the same empty square several times, but no opposing piece can be jumped twice. Captured pieces can only be lifted from the board after the end of the multiple capture.

Examples

			It is possible to capture in a single move 19 opposing pieces on a 10 X 10 board, but not one more, so a(10) = 19.
		

Crossrefs

Cf. A000290, A059193, A125202, A000982 (active squares).

Programs

  • PARI
    a(n) = if(n<5, floor(n/3), (n^2 - 2*n + if(n%2, 1, 2*(n%4) - 8))/4)

Formula

a(2*t+1) = t^2 = A000290(t).
a(4*t+6) = 4*t^2 + 10*t + 5 = A125202(t+2).
a(4*t+8) = 4*t^2 + 14*t + 10 = A059193(t+2).
a(0) = a(2) = 0; a(4) = 1.
Recurrence: For t >= 1, a(2*t+1) = a(2*t-1) + 2*t - 1;
For t >= 1, a(4*t+3) = a(4*t+2) + 2*t + 2; a(4*t+2) = a(4*t+1) + 2*t - 1;
For t >= 2, a(4*t+1) = a(4*t) + 2*t + 2; a(4*t) = a(4*t-1) + 2*t - 3.
From Colin Barker, Nov 14 2019: (Start)
G.f.: x^3*(1 - x + 3*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x)*(1 + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>10.
(End)
Previous Showing 11-14 of 14 results.