A081353 Diagonal of square maze arrangement of natural numbers A081349.
3, 5, 13, 19, 31, 41, 57, 71, 91, 109, 133, 155, 183, 209, 241, 271, 307, 341, 381, 419, 463, 505, 553, 599, 651, 701, 757, 811, 871, 929, 993, 1055, 1123, 1189, 1261, 1331, 1407, 1481, 1561, 1639, 1723, 1805, 1893, 1979, 2071, 2161, 2257, 2351, 2451, 2549
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[(n + 1)*(n + 2) + (-1)^n: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
-
Maple
A081353:=n->(n+1)*(n+2)+(-1)^n: seq(A081353(n), n=0..100); # Wesley Ivan Hurt, Aug 09 2015
-
Mathematica
Table[(n + 1) (n + 2) + (-1)^n, {n, 0, 70}] (* Wesley Ivan Hurt, Aug 09 2015 *) LinearRecurrence[{2,0,-2,1},{3,5,13,19},50] (* Harvey P. Dale, Aug 02 2021 *)
Formula
a(n) = (n+1)*(n+2)+(-1)^n = 2*binomial(n+2,2)+(-1)^n.
G.f.: (3-x)*(1+x^2)/((1-x)^3*(1+x)). [Colin Barker, Sep 03 2012]
From Wesley Ivan Hurt, Aug 09 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4), n>4.
a(n) = n^2+3n+3 if n is even, otherwise n^2+3n+1.
Comments