cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A319076 Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

T(n,k) is also the sum of the divisors of the n-th nonnegative power of the k-th prime, n >= 0, k >= 1.

Examples

			The corner of the square array is as follows:
         A126646 A003462 A003463  A023000    A016123    A091030     A091045
A000012        1,      1,      1,       1,         1,         1,          1, ...
A008864        3,      4,      6,       8,        12,        14,         18, ...
A060800        7,     13,     31,      57,       133,       183,        307, ...
A131991       15,     40,    156,     400,      1464,      2380,       5220, ...
A131992       31,    121,    781,    2801,     16105,     30941,      88741, ...
A131993       63,    364,   3906,   19608,    177156,    402234,    1508598, ...
.......      127,   1093,  19531,  137257,   1948717,   5229043,   25646167, ...
.......      255,   3280,  97656,  960800,  21435888,  67977560,  435984840, ...
.......      511,   9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = sigma(prime(k)^n); \\ Michel Marcus, Sep 13 2018

Formula

T(n,k) = A000203(A000040(k)^n).
T(n,k) = Sum_{j=0..n} A000040(k)^j.
T(n,k) = Sum_{j=0..n} A319075(j,k).
T(n,k) = (A000040(k)^(n+1) - 1)/(A000040(k) - 1).
T(n,k) = (A000040(k)^(n+1) - 1)/A006093(k).

A330725 a(0) = 0; thereafter a(n) = a(n-1) + sigma(n) if sigma(n) > a(n-1), otherwise a(n) = a(n-1) - sigma(n), where sigma is the sum of divisors function A000203.

Original entry on oeis.org

0, 1, 4, 0, 7, 1, 13, 5, 20, 7, 25, 13, 41, 27, 3, 27, 58, 40, 1, 21, 63, 31, 67, 43, 103, 72, 30, 70, 14, 44, 116, 84, 21, 69, 15, 63, 154, 116, 56, 0, 90, 48, 144, 100, 16, 94, 22, 70, 194, 137, 44, 116, 18, 72, 192, 120, 0, 80, 170, 110, 278, 216, 120, 16
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, ((s, t)-> s+
          `if`(s
    				
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[DivisorSigma[1,n+1]>a,a+DivisorSigma[1,n+1],a- DivisorSigma[ 1,n+1]]}; NestList[nxt,{0,0},70][[All,2]] (* Harvey P. Dale, May 14 2022 *)

A331165 a(n) = a(n-1) + p(n) if p(n) > a(n-1), otherwise a(n) = a(n-1) - p(n), where p is the partition function A000041 (assuming a(n) = 0 for n < 0).

Original entry on oeis.org

1, 0, 2, 5, 0, 7, 18, 3, 25, 55, 13, 69, 146, 45, 180, 4, 235, 532, 147, 637, 10, 802, 1804, 549, 2124, 166, 2602, 5612, 1894, 6459, 855, 7697, 16046, 5903, 18213, 3330, 21307, 42944, 16929, 48114, 10776, 55359, 2185, 65446, 140621, 51487, 157045, 32291, 179564
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, ((s, t)-> s+
         `if`(s
    				
  • Mathematica
    a[n_] := a[n] = If[n<0, 0, With[{a1 = a[n-1], p = PartitionsP[n]}, If[p>a1, a1 + p, a1 - p]]];
    a /@ Range[0, 70] (* Jean-François Alcover, Jan 05 2021 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, my(p = numbpart(n-1)); va[n] = va[n-1] - p; if (va[n] < 0, va[n] += 2*p);); va;} \\ Michel Marcus, Jan 06 2021

A334627 T(n,k) is the number of k's in the n-th row of Stern's triangle (A337277); triangle T(n,k), n >= 0, 1 <= k <= A000045(n+1), read by rows.

Original entry on oeis.org

1, 3, 5, 2, 7, 4, 4, 9, 6, 8, 4, 4, 11, 8, 12, 8, 12, 0, 8, 4, 13, 10, 16, 12, 20, 4, 16, 8, 8, 4, 8, 4, 4, 15, 12, 20, 16, 28, 8, 28, 12, 16, 8, 24, 8, 16, 8, 4, 4, 8, 8, 8, 0, 4, 17, 14, 24, 20, 36, 12, 40, 20, 24, 12, 40, 12, 36, 16, 8, 16, 28, 16, 24, 4, 8, 8, 16, 4, 12, 8, 8, 0, 12, 4, 8, 0, 0, 4
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2020

Keywords

Comments

All terms in the first column are odd, all other terms are even.

Examples

			T(0,1) = 1 because Stern's triangle has one 1 in row n=0.
T(2,2) = 2 because Stern's triangle has two 2's in row n=2.
T(4,3) = 8 because Stern's triangle has eight 3's in row n=4.
Triangle T(n,k) begins:
   1;
   3;
   5,  2;
   7,  4,  4;
   9,  6,  8,  4,  4;
  11,  8, 12,  8, 12, 0,  8,  4;
  13, 10, 16, 12, 20, 4, 16,  8,  8, 4,  8, 4,  4;
  15, 12, 20, 16, 28, 8, 28, 12, 16, 8, 24, 8, 16, 8, 4, 4, 8, 8, 8, 0, 4;
  ...
		

Crossrefs

Column k=1 gives A005408.
Row sums give A126646.
Row lengths give A000045(n+1).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1], (l-> [1, l[1],
          seq([l[i-1]+l[i], l[i]][], i=2..nops(l)), 1])(b(n-1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(add(x^j, j=b(n))):
    seq(T(n), n=0..8);

Formula

Sum_{k=1..A000045(n+1)} k * T(n,k) = A000244(n).

A341746 If the runs in the binary expansion of n are (r_1, ..., r_k), then the runs in the binary expansion of a(n) are (r_1 + ... + r_k, r_1, ..., r_{k-1}).

Original entry on oeis.org

1, 6, 3, 14, 29, 28, 7, 30, 123, 122, 61, 60, 121, 120, 15, 62, 503, 502, 251, 250, 501, 500, 125, 124, 499, 498, 249, 248, 497, 496, 31, 126, 2031, 2030, 1015, 1014, 2029, 2028, 507, 506, 2027, 2026, 1013, 1012, 2025, 2024, 253, 252, 2023, 2022, 1011, 1010
Offset: 1

Views

Author

Rémy Sigrist, Feb 18 2021

Keywords

Comments

This sequence is related to A341694 (see Formula section).
All terms are distinct.
If a(n) > n, then a(n) does not appear in A341699.

Examples

			The first terms, in decimal and in binary, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   1     1       1          1
   2     6      10        110
   3     3      11         11
   4    14     100       1110
   5    29     101      11101
   6    28     110      11100
   7     7     111        111
   8    30    1000      11110
   9   123    1001    1111011
  10   122    1010    1111010
  11    61    1011     111101
  12    60    1100     111100
  13   121    1101    1111001
  14   120    1110    1111000
  15    15    1111       1111
		

Crossrefs

Programs

  • PARI
    toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r }
    fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
    a(n) = { my (r=toruns(n)); fromruns(concat(vecsum(r), r[1..#r-1])) }

Formula

A341694(a(n), k) = A341694(n, k+1).
a(n) = n iff n belongs to A126646.
A090996(a(n)) = A070939(n).
A090996(a(n)) > A070939(a(n)) / 2.
A005811(a(n)) = A005811(n).

A367669 Number of degree 3 number fields unramified outside the first n prime numbers.

Original entry on oeis.org

0, 9, 32, 108, 360, 1168, 3638, 11492, 35638, 111059
Offset: 1

Views

Author

Robin Visser, Nov 26 2023

Keywords

Comments

B. Matschke showed that a(11) = 340618 assuming the Generalized Riemann Hypothesis.

Examples

			For n = 1, there are no cubic number fields unramified away from 2, so a(1) = 0.
For n = 2, the a(2) = 9 cubic number fields unramified away from {2,3} can be given by Q(a) where a is a root of x^3 - 3x - 1, x^3 - 2, x^3 + 3x - 2, x^3 - 3, x^3 - 3x - 4, x^3 - 3x - 10, x^3 - 12, x^3 - 6, or x^3 - 9x - 6.
		

Crossrefs

Cf. A126646 (degree 2), A368057 (degree 4).

A368057 Number of degree 4 number fields unramified outside the first n prime numbers.

Original entry on oeis.org

7, 62, 379, 2165, 12315, 67887
Offset: 1

Views

Author

Robin Visser, Dec 09 2023

Keywords

Examples

			For n = 1, the a(1) = 7 degree 4 number fields unramified away from {2} can be given by Q(a) where a is a root of x^4 + 1, x^4 - 2x^2 + 2, x^4 - 2x^2 - 1, x^4 - 2, x^4 + 2, x^4 - 4x^2 + 2, or x^4 + 4x^2 + 2.
		

Crossrefs

Cf. A126646 (degree 2), A367669 (degree 3).

A368479 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} 2^j * j^k.

Original entry on oeis.org

1, 0, 3, 0, 2, 7, 0, 2, 10, 15, 0, 2, 18, 34, 31, 0, 2, 34, 90, 98, 63, 0, 2, 66, 250, 346, 258, 127, 0, 2, 130, 714, 1274, 1146, 642, 255, 0, 2, 258, 2074, 4810, 5274, 3450, 1538, 511, 0, 2, 514, 6090, 18458, 24810, 19098, 9722, 3586, 1023
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2023

Keywords

Examples

			Square array begins:
    1,   0,    0,     0,      0,      0,       0, ...
    3,   2,    2,     2,      2,      2,       2, ...
    7,  10,   18,    34,     66,    130,     258, ...
   15,  34,   90,   250,    714,   2074,    6090, ...
   31,  98,  346,  1274,   4810,  18458,   71626, ...
   63, 258, 1146,  5274,  24810, 118458,  571626, ...
  127, 642, 3450, 19098, 107754, 616122, 3557610, ...
		

Crossrefs

Columns k=0..3 give A126646, A036799, A036800, A036827.
Main diagonal gives A368466.

Programs

  • PARI
    T(n, k) = sum(j=0, n, 2^j*j^k);

Formula

G.f. of column k: 2*x*A_k(2*x)/((1-x) * (1-2*x)^(k+1)), where A_n(x) are the Eulerian polynomials for k > 0.

A369277 Distinct values of A369317, in order of appearance.

Original entry on oeis.org

1, 3, 7, 5, 15, 9, 31, 21, 11, 13, 63, 17, 51, 127, 85, 33, 73, 255, 27, 45, 511, 65, 341, 23, 107, 29, 19, 189, 195, 25, 1023, 273, 69, 81, 455, 129, 585, 79, 93, 819, 207, 121, 243, 2047, 1365, 279, 635, 443, 889, 465, 4095, 257, 1419, 1677, 1057, 313, 1335
Offset: 1

Views

Author

Rémy Sigrist, Jan 20 2024

Keywords

Comments

All terms are even.
This sequence is infinite as it contains A126646.
Will every odd number appear in the sequence?
Empirically, each odd number, say v, appears in A369317, and the first index is of the form v*2^k - 1 for some k > 0 (see Example section).

Examples

			The first terms, alongside their index m in A369317, in decimal and in binary, are:
  n   a(n)  m     bin(a(n))  bin(m)
  --  ----  ----  ---------  ------------
   1     1     1          1             1
   2     3     5         11           101
   3     7    27        111         11011
   4     5    39        101        100111
   5    15   119       1111       1110111
   6     9   287       1001     100011111
   7    31   495      11111     111101111
   8    21   671      10101    1010011111
   9    11   703       1011    1010111111
  10    13   831       1101    1100111111
  11    63  2015     111111   11111011111
  12    17  2175      10001  100001111111
		

Crossrefs

Programs

  • PARI
    See Links section.

A382412 Numbers with no zeros in their base-7 representation.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Paolo Xausa, Mar 24 2025

Keywords

Crossrefs

Cf. zeroless numbers in other bases: A126646 (base 2), A032924 (base 3), A023705 (base 4), A023721 (base 5), A248910 (base 6), A255805 (base 8), A255808 (base 9), A052382 (base 10).
Cf. A007093, A043393, A249102, A382413 (complement).

Programs

  • Mathematica
    Select[Range[100], DigitCount[#, 7, 0] == 0 &]
Previous Showing 31-40 of 49 results. Next