A161858
Number of reduced words of length n in the Weyl group B_12.
Original entry on oeis.org
1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923858, 1623116, 2753972, 4528964, 7240871, 11284064, 17178942, 25599288, 37402222, 53660256, 75694775, 105110084, 143826980, 194114636, 258619428, 340389204, 442891395, 570023312, 726112969
Offset: 0
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
- N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..12]])/(1-t)^12)); // G. C. Greubel, Oct 25 2018
-
seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..12),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
-
CoefficientList[Series[Product[(1-x^(2*k)),{k,1,12}]/(1-x)^12,{x,0,50}], x] (* G. C. Greubel, Oct 25 2018 *)
-
t='t+O('t^50); Vec(prod(k=1,12,1-t^(2*k))/(1-t)^12) \\ G. C. Greubel, Oct 25 2018
A267167
Growth series for affine Coxeter group B_4.
Original entry on oeis.org
1, 5, 14, 31, 59, 101, 161, 243, 351, 488, 658, 865, 1112, 1403, 1741, 2130, 2574, 3077, 3643, 4274, 4974, 5747, 6597, 7528, 8543, 9646, 10840, 12129, 13517, 15007, 16603, 18309, 20129, 22066, 24123, 26304, 28613, 31054, 33631, 36347, 39205, 42209, 45363, 48671, 52136, 55762, 59553, 63512, 67643, 71949, 76434, 81102, 85957, 91003, 96242
Offset: 0
- N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,2,-2,1,0,0,-1,2,-1).
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series((1-x^2)*(1+x^3)*(1-x^4)*(1-x^8)/((1-x)^5*(1-x^5)*(1-x^7)),x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Oct 25 2018
-
CoefficientList[Series[(1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)), {t, 0, 50}], t] (* G. C. Greubel, Oct 24 2018 *)
-
t='t+O('t^40); Vec((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7))) \\ G. C. Greubel, Oct 24 2018
A267175
Growth series for affine Coxeter group B_12.
Original entry on oeis.org
1, 13, 90, 443, 1741, 5811, 17109, 45577, 111852, 256282, 553866, 1138110, 2237924, 4233126, 7735923, 13707967, 23625303, 39706809, 65225654, 104927954, 165588279, 256738054, 391610309, 588352779, 871571154, 1274275456, 1840315206, 2627403376, 3710845242, 5188106314, 7184373674, 9859287465, 13415044111, 18106100284, 24250736849
Offset: 0
- N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 82, -108, 53, 90, -225, 217, -27, -217, 306, -144, -133, 261, -99, -217, 379, -197, -188, 404, -207, -252, 542, -360, -154, 521, -387, -107, 459, -326, -117, 358, -88, -452, 693, -327, -342, 666, -296, -434, 800, -415, -349, 720, -315, -460, 811, -359, -457, 800, -277, -649, 1102, -649, -277, 800, -457, -359, 811, -460, -315, 720, -349, -415, 800, -434, -296, 666, -342, -327, 693, -452, -88, 358, -117, -326, 459, -107, -387, 521, -154, -360, 542, -252, -207, 404, -188, -197, 379, -217, -99, 261, -133, -144, 306, -217, -27, 217, -225, 90, 53, -108, 82, -36, 9, -1).
A128080
Triangle, read by rows of n(n-1)+1 terms, of coefficients of q in the q-analog of the odd double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 14, 15, 14, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 45, 60, 74, 86, 94, 97, 94, 86, 74, 60, 45, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 110, 170, 244, 330, 424, 521, 614, 696, 760, 801, 815, 801, 760, 696, 614, 521, 424, 330, 244, 170
Offset: 0
Triangle begins:
1;
1;
1,1,1;
1,2,3,3,3,2,1;
1,3,6,9,12,14,15,14,12,9,6,3,1;
1,4,10,19,31,45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
...
-
b:= proc(n) option remember; `if`(n=0, 1,
simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
end:
T:= n-> (p-> seq(coeff(p, q, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..6); # Alois P. Heinz, Sep 22 2021
-
Catenate@Table[CoefficientList[Cancel@FunctionExpand[-q QPochhammer[1/q, q^2, n + 1]/(1 - q)^(n + 1)], q], {n, 0, 6}] (* Vladimir Reshetnikov, Sep 22 2021 *)
T[n_] := If[n == 0, {1}, Product[(1 - q^(2 j - 1))/(1 - q), {j, 1, n}] + O[q]^(n (n + 1)) // CoefficientList[#, q]&];
Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)
-
T(n,k)=if(k<0 || k>n*(n-1),0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j-1))/(1-q)),k,q)))
for(n=0,8,for(k=0,n*(n-1),print1(T(n,k),", "));print(""))
A128085
Central coefficients of q in the q-analog of the even double factorials: a(n) = [q^([n^2/2])] Product_{j=1..n} (1-q^(2j))/(1-q).
Original entry on oeis.org
1, 1, 2, 8, 46, 340, 3210, 36336, 484636, 7394458, 127707302, 2454109404, 52091631896, 1207854671388, 30431260261770, 826657521349952, 24114046688034516, 751085176539860458, 24899882719111953556
Offset: 0
a(n) is the central term of the q-analog of even double factorials,
in which the coefficients of q (triangle A128084) begin:
n=0: (1);
n=1: (1),1;
n=2: 1,2,(2),2,1;
n=3: 1,3,5,7,(8),8,7,5,3,1;
n=4: 1,4,9,16,24,32,39,44,(46),44,39,32,24,16,9,4,1;
n=5: 1,5,14,30,54,86,125,169,215,259,297,325,(340),340,325,297,...;...
The terms enclosed in parenthesis are initial terms of this sequence.
-
a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k))/(1-q)),n^2\2,q))
A128596
Triangle, read by rows, of coefficients of q^(nk) in the q-analog of the even double factorials: T(n,k) = [q^(nk)] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 24, 46, 24, 1, 1, 86, 297, 297, 86, 1, 1, 315, 1919, 3210, 1919, 315, 1, 1, 1170, 12399, 32510, 32510, 12399, 1170, 1, 1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1, 1, 16588, 520399, 3054100, 6730832, 6730832
Offset: 0
Row sums equal 2*A000165(n-1) for n>0, twice the even double factorials:
[1, 2, 4, 16, 96, 768, 7680, 92160, 1290240, ..., 2*(2n-2)!!, ...].
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 24, 46, 24, 1;
1, 86, 297, 297, 86, 1;
1, 315, 1919, 3210, 1919, 315, 1;
1, 1170, 12399, 32510, 32510, 12399, 1170, 1;
1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1;
1, 16588, 520399, 3054100, 6730832, 6730832, 3054100, 520399, 16588, 1;
1, 63064, 3382588, 28980565, 89514691, 127707302, 89514691, 28980565, 3382588, 63064, 1;
-
T(n,k)=if(k<0 || k>n^2,0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),n*k,q)))
A128087
Sum of squared coefficients of q in the q-analog of the even double factorials.
Original entry on oeis.org
1, 2, 14, 296, 12938, 956720, 107245250, 16966970200, 3601980861720, 988252809411908, 340375635448973106, 143798619953044471444, 73123320014581106403732, 44060303354020797873285800
Offset: 0
-
{a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),k,q)^2))}
A128597
Column 2 of triangle A128596; a(n) = coefficient of q^(2n+4) in the q-analog of the even double factorials (2n+4)!! for n>=0.
Original entry on oeis.org
1, 7, 46, 297, 1919, 12399, 80241, 520399, 3382588, 22034519, 143826980, 940569228, 6161492611, 40426009162, 265617089899, 1747501590554, 11510584144337, 75901841055650, 501007227527884, 3310076954166501
Offset: 0
-
{a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j))/(1-q)),2*n+4,q)}
A128598
Column 3 of triangle A128596; a(n) = coefficient of q^(3n+9) in the q-analog of the even double factorials (2n+6)!! for n>=0.
Original entry on oeis.org
1, 24, 297, 3210, 32510, 318171, 3054100, 28980565, 273077443, 2562036673, 23973009386, 223949654108, 2090070431683, 19496003736658, 181815760387221, 1695523268254637, 15813185728272754, 147508341317700463
Offset: 0
-
{a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j))/(1-q)),3*n+9,q)}
A161879
Number of reduced words of length n in the Weyl group B_19.
Original entry on oeis.org
1, 19, 189, 1311, 7124, 32300, 127091, 445721, 1420364, 4172476, 11426240, 29429784, 71808030, 166970290, 371826581, 796341623, 1646167391, 3294638285, 6401307860, 12102626404, 22312161586, 40184022430, 70815181390, 122291804610, 207223417349, 344959019207, 564743768579
Offset: 0
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
Comments