cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 66 results. Next

A161858 Number of reduced words of length n in the Weyl group B_12.

Original entry on oeis.org

1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923858, 1623116, 2753972, 4528964, 7240871, 11284064, 17178942, 25599288, 37402222, 53660256, 75694775, 105110084, 143826980, 194114636, 258619428, 340389204, 442891395, 570023312, 726112969
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

Row n=12 of A128084.
The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..12]])/(1-t)^12)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..12),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)),{k,1,12}]/(1-x)^12,{x,0,50}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^50); Vec(prod(k=1,12,1-t^(2*k))/(1-t)^12) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A267167 Growth series for affine Coxeter group B_4.

Original entry on oeis.org

1, 5, 14, 31, 59, 101, 161, 243, 351, 488, 658, 865, 1112, 1403, 1741, 2130, 2574, 3077, 3643, 4274, 4974, 5747, 6597, 7528, 8543, 9646, 10840, 12129, 13517, 15007, 16603, 18309, 20129, 22066, 24123, 26304, 28613, 31054, 33631, 36347, 39205, 42209, 45363, 48671, 52136, 55762, 59553, 63512, 67643, 71949, 76434, 81102, 85957, 91003, 96242
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)))); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series((1-x^2)*(1+x^3)*(1-x^4)*(1-x^8)/((1-x)^5*(1-x^5)*(1-x^7)),x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)), {t, 0, 50}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7))) \\ G. C. Greubel, Oct 24 2018
    

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
Here (k=4) the G.f. is (1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(t^3+1)*(1+t+t^2+t^3)*(1+t) / (-1+t^7)/(-1+t^5)/(-1+t)^2.
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) - a(n-12) + 2*a(n-13) - a(n-14), n > 0. - Muniru A Asiru, Oct 25 2018

A267175 Growth series for affine Coxeter group B_12.

Original entry on oeis.org

1, 13, 90, 443, 1741, 5811, 17109, 45577, 111852, 256282, 553866, 1138110, 2237924, 4233126, 7735923, 13707967, 23625303, 39706809, 65225654, 104927954, 165588279, 256738054, 391610309, 588352779, 871571154, 1274275456, 1840315206, 2627403376, 3710845242, 5188106314, 7184373674, 9859287465, 13415044111, 18106100284, 24250736849
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A128080 Triangle, read by rows of n(n-1)+1 terms, of coefficients of q in the q-analog of the odd double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 14, 15, 14, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 45, 60, 74, 86, 94, 97, 94, 86, 74, 60, 45, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 110, 170, 244, 330, 424, 521, 614, 696, 760, 801, 815, 801, 760, 696, 614, 521, 424, 330, 244, 170
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128084 for the triangle of coefficients of q in the q-analog of the even double factorials.

Examples

			Triangle begins:
  1;
  1;
  1,1,1;
  1,2,3,3,3,2,1;
  1,3,6,9,12,14,15,14,12,9,6,3,1;
  1,4,10,19,31,45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
  ...
		

Crossrefs

Cf. A001147 (row sums); A128081 (central terms), A128082 (diagonal), A128083 (row squared sums); A128084.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    T:= n-> (p-> seq(coeff(p, q, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..6);  # Alois P. Heinz, Sep 22 2021
  • Mathematica
    Catenate@Table[CoefficientList[Cancel@FunctionExpand[-q QPochhammer[1/q, q^2, n + 1]/(1 - q)^(n + 1)], q], {n, 0, 6}] (* Vladimir Reshetnikov, Sep 22 2021 *)
    T[n_] := If[n == 0, {1}, Product[(1 - q^(2 j - 1))/(1 - q), {j, 1, n}] + O[q]^(n (n + 1)) // CoefficientList[#, q]&];
    Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)
  • PARI
    T(n,k)=if(k<0 || k>n*(n-1),0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j-1))/(1-q)),k,q)))
    for(n=0,8,for(k=0,n*(n-1),print1(T(n,k),", "));print(""))

Formula

The row sums are A001147, the odd double factorial numbers (2n-1)!!.

A128085 Central coefficients of q in the q-analog of the even double factorials: a(n) = [q^([n^2/2])] Product_{j=1..n} (1-q^(2j))/(1-q).

Original entry on oeis.org

1, 1, 2, 8, 46, 340, 3210, 36336, 484636, 7394458, 127707302, 2454109404, 52091631896, 1207854671388, 30431260261770, 826657521349952, 24114046688034516, 751085176539860458, 24899882719111953556
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128081 for central coefficients of q in the q-analog of the odd double factorials. Also, A000140 is the central coefficients of q-factorials, giving the maximum number of permutations on n letters having the same number of inversions.

Examples

			a(n) is the central term of the q-analog of even double factorials,
in which the coefficients of q (triangle A128084) begin:
n=0: (1);
n=1: (1),1;
n=2: 1,2,(2),2,1;
n=3: 1,3,5,7,(8),8,7,5,3,1;
n=4: 1,4,9,16,24,32,39,44,(46),44,39,32,24,16,9,4,1;
n=5: 1,5,14,30,54,86,125,169,215,259,297,325,(340),340,325,297,...;...
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A000165 ((2n)!!); A128084 (triangle), A128086 (diagonal); A128081.

Programs

  • PARI
    a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k))/(1-q)),n^2\2,q))

A128596 Triangle, read by rows, of coefficients of q^(nk) in the q-analog of the even double factorials: T(n,k) = [q^(nk)] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 24, 46, 24, 1, 1, 86, 297, 297, 86, 1, 1, 315, 1919, 3210, 1919, 315, 1, 1, 1170, 12399, 32510, 32510, 12399, 1170, 1, 1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1, 1, 16588, 520399, 3054100, 6730832, 6730832
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Examples

			Row sums equal 2*A000165(n-1) for n>0, twice the even double factorials:
[1, 2, 4, 16, 96, 768, 7680, 92160, 1290240, ..., 2*(2n-2)!!, ...].
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 24, 46, 24, 1;
1, 86, 297, 297, 86, 1;
1, 315, 1919, 3210, 1919, 315, 1;
1, 1170, 12399, 32510, 32510, 12399, 1170, 1;
1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1;
1, 16588, 520399, 3054100, 6730832, 6730832, 3054100, 520399, 16588, 1;
1, 63064, 3382588, 28980565, 89514691, 127707302, 89514691, 28980565, 3382588, 63064, 1;
		

Crossrefs

Cf. A128084; A000165 ((2n)!!); A128086 (column 1), A128597 (column 2), A128598 (column 3); variant: A128592.

Programs

  • PARI
    T(n,k)=if(k<0 || k>n^2,0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),n*k,q)))

Formula

T(n,k) = A128084(n,nk) where A128084 is the triangle of coefficients of q in the q-analog of the even double factorials.

A128087 Sum of squared coefficients of q in the q-analog of the even double factorials.

Original entry on oeis.org

1, 2, 14, 296, 12938, 956720, 107245250, 16966970200, 3601980861720, 988252809411908, 340375635448973106, 143798619953044471444, 73123320014581106403732, 44060303354020797873285800
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128083 for sum of squared coefficients of q in the q-analog of the odd double factorials. Also, A127728 is the sum of squared coefficients of q in the q-factorials.

Crossrefs

Cf. A000165 ((2n)!!); A128084 (triangle), A128085 (central terms), A128086 (diagonal); A127728.

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),k,q)^2))}

A128597 Column 2 of triangle A128596; a(n) = coefficient of q^(2n+4) in the q-analog of the even double factorials (2n+4)!! for n>=0.

Original entry on oeis.org

1, 7, 46, 297, 1919, 12399, 80241, 520399, 3382588, 22034519, 143826980, 940569228, 6161492611, 40426009162, 265617089899, 1747501590554, 11510584144337, 75901841055650, 501007227527884, 3310076954166501
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128596; A128084; A000165 ((2n)!!); A128086 (column 1), A128598 (column 3).

Programs

  • PARI
    {a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j))/(1-q)),2*n+4,q)}

Formula

a(n) = [q^(2n+4)] Product_{j=1..n+2} (1-q^(2j))/(1-q) for n>=0.

A128598 Column 3 of triangle A128596; a(n) = coefficient of q^(3n+9) in the q-analog of the even double factorials (2n+6)!! for n>=0.

Original entry on oeis.org

1, 24, 297, 3210, 32510, 318171, 3054100, 28980565, 273077443, 2562036673, 23973009386, 223949654108, 2090070431683, 19496003736658, 181815760387221, 1695523268254637, 15813185728272754, 147508341317700463
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128596; A128084; A000165 ((2n)!!); A128086 (column 1), A128597 (column 2).

Programs

  • PARI
    {a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j))/(1-q)),3*n+9,q)}

Formula

a(n) = [q^(3n+9)] Product_{j=1..n+3} (1-q^(2j))/(1-q) for n>=0.

A161879 Number of reduced words of length n in the Weyl group B_19.

Original entry on oeis.org

1, 19, 189, 1311, 7124, 32300, 127091, 445721, 1420364, 4172476, 11426240, 29429784, 71808030, 166970290, 371826581, 796341623, 1646167391, 3294638285, 6401307860, 12102626404, 22312161586, 40184022430, 70815181390, 122291804610, 207223417349, 344959019207, 564743768579
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

Row n=19 of A128084.

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Previous Showing 11-20 of 66 results. Next