cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A056108 Fourth spoke of a hexagonal spiral.

Original entry on oeis.org

1, 5, 15, 31, 53, 81, 115, 155, 201, 253, 311, 375, 445, 521, 603, 691, 785, 885, 991, 1103, 1221, 1345, 1475, 1611, 1753, 1901, 2055, 2215, 2381, 2553, 2731, 2915, 3105, 3301, 3503, 3711, 3925, 4145, 4371, 4603, 4841, 5085, 5335, 5591, 5853, 6121, 6395
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

a(n) = sum of (n+1)-th row terms of triangle A134234. - Gary W. Adamson, Oct 14 2007
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Equals binomial transform of [1, 4, 6, 0, 0, 0, ...] - Gary W. Adamson, Apr 30 2008
From A.K. Devaraj, Sep 18 2009: (Start)
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod f(x)); here n belongs to N.
There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z.
However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x.
The present sequence is the integer part when the polynomial is x^2 + x + 1 and x = sqrt(2),
f(x+n*f(x))/f(x) = a(n) + A005563(n)*sqrt(2).
Equals triangle A128229 as an infinite lower triangular matrix * A016777 as a vector, where A016777(n) = (3*n+1). (End)
Numbers of the form ((-h^2+h+1)^2+(h^2-h+1)^2+(h^2+h-1)^2)/(h^2+h+1) for h=n+1. - Bruno Berselli, Mar 13 2013

Crossrefs

Other spirals: A054552.

Programs

Formula

a(n) = 3*n^2 + n + 1.
a(n) = a(n-1) + 6*n - 2 = 2*a(n-1) - a(n-2) + 6
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056105(n) + 3*n = A056106(n) + 2*n = A056107(n) + n = A056109(n) - n = A003215(n) - 2*n.
a(n) = A096777(3n+1) . - Reinhard Zumkeller, Dec 29 2007
a(n) = 6*n+a(n-1)-2 with n>0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1+2*x+3*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(-n) = A056106(n). - Bruno Berselli, Mar 13 2013
E.g.f.: (3*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jul 19 2017

A103450 A figurate number triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 12, 7, 1, 1, 9, 22, 22, 9, 1, 1, 11, 35, 50, 35, 11, 1, 1, 13, 51, 95, 95, 51, 13, 1, 1, 15, 70, 161, 210, 161, 70, 15, 1, 1, 17, 92, 252, 406, 406, 252, 92, 17, 1, 1, 19, 117, 372, 714, 882, 714, 372, 117, 19, 1, 1, 21, 145, 525, 1170, 1722, 1722, 1170, 525, 145, 21, 1
Offset: 0

Views

Author

Paul Barry, Feb 06 2005

Keywords

Comments

Row coefficients are the absolute values of the coefficients of the characteristic polynomials of the n X n matrices A(n) with A(n){i,i} = 2, i>0, A(n){i,j} = 1, otherwise (starts with (0,0) position).
The triangle can be generated by the matrix multiplication A007318 * A114219s, where A114219s = 0; 0,1; 0,1,1; 0,-1,2,1; 0,1,-2,3,1; 0,-1,2,-3,4,1; ... = A097807 * A128229 is a signed variant of A114219. - Gary W. Adamson, Feb 20 2007

Examples

			From _Roger L. Bagula_, Oct 21 2008: (Start)
The triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   5,   1;
  1,  7,  12,   7,   1;
  1,  9,  22,  22,   9,   1;
  1, 11,  35,  50,  35,  11,   1;
  1, 13,  51,  95,  95,  51,  13,   1;
  1, 15,  70, 161, 210, 161,  70,  15,   1;
  1, 17,  92, 252, 406, 406, 252,  92,  17,  1;
  1, 19, 117, 372, 714, 882, 714, 372, 117, 19, 1; ... (End)
		

Crossrefs

Row sums are A045623.
Columns include: A000326, A002412, A002418, A005408.

Programs

  • Magma
    A103450:= func< n,k | k eq 0 select 1 else Binomial(n, k)*(k*(n-k) + n)/n >;
    [A103450(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 17 2021
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= p[x, n]= If[n==0, 1, (-1+x)^(n-2)*(1 -(n+1)*x +x^2)];
    T[n_, k_]:= T[n,k]= (-1)^(n+k)*SeriesCoefficient[p[x, n], {x, 0, k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula and Gary W. Adamson, Oct 21 2008 *)(* corrected by G. C. Greubel, Jun 17 2021 *)
    (* Second program *)
    T[n_, k_]:= If[k==0, 1, Binomial[n, k]*(n*(k+1) -k^2)/n];
    Table[T[n, k], {n,0,16}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 17 2021 *)
  • Sage
    def A103450(n, k): return 1 if (k==0) else binomial(n, k)*(k*(n-k) + n)/n
    flatten([[A103450(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 17 2021

Formula

T(n, k) = binomial(n-1, k-1)*(k*(n-k) + n)/k with T(n, 0) = 1.
T(n, k) = T(n-1, k-1) + T(n-1, k) + binomial(n-2, k-1) with T(n, 0) = 1.
Column k is generated by (1+k*x)*x^k/(1-x)^(k+1).
Rows are coefficients of the polynomials P(0, x) = 1, P(n, x) = (1+x)^(n-2)*(1 +(n+1)*x + x^2) for n>0.
T(n,k) = Sum_{j=0..n} binomial(k, k-j)*binomial(n-k, j)*(j+1). - Paul Barry, Oct 28 2006
A signed version arises from the coefficients of the polynomials defined by: p(x, 0) = 1, p(x, 1) = (-1 +x), p(x, 2) = (1 -3*x +x^2), p(x,n) = (-1 +x)^(n-2)*(1 - (n + 1)*x + x^2); T(n, k) = (-1)^(n+k)*coefficient of x^k of ( p(x,n) ). - Roger L. Bagula and Gary W. Adamson, Oct 21 2008
T(2*n+1, n) = A141222(n). - Emanuele Munarini, Jun 01 2012 [corrected by Werner Schulte, Nov 27 2021]
G.f.: is 1 / ( (1-q*x/(1-x)) * (1-x/(1-q*x)) ). - Joerg Arndt, Aug 27 2013
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/5)*((-n+5)*Fibonacci(n+1) + (3*n- 2)*Fibonacci(n)) = A208354(n). - G. C. Greubel, Jun 17 2021
T(2*n, n) = A000984(n) * (n + 2) / 2 for n >= 0. - Werner Schulte, Nov 27 2021

A145677 Triangle T(n, k) read by rows: T(n, 0) = 1, T(n, n) = n, n>0, T(n,k) = 0, 0 < k < n-1.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Mar 28 2009

Keywords

Comments

The first entry in each row is 1, the last entry in each of the rows consist of the positive integers (starting 1,1,2,3,...), and all other entries in the triangle are 0's (see example).
The vector of (1, 1, 2, 5, 16, 65, 326,...), which is 1 followed by A000522, is an eigenvector of the matrix: 1 + Sum_{k=1..n} T(n,k)*A000522(k-1) = A000522(n).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 0, 2;
  1, 0, 0, 3;
  1, 0, 0, 0, 4;
  1, 0, 0, 0, 0, 5;
  1, 0, 0, 0, 0, 0, 6;
  1, 0, 0, 0, 0, 0, 0, 7;
  1, 0, 0, 0, 0, 0, 0, 0, 8;
  1, 0, 0, 0, 0, 0, 0, 0, 0, 9;
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[k==0, 1, If[k==n, n, 0]];
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 23 2021 *)
  • Sage
    def A145677(n,k):
        if (k==0): return 1
        elif (k==n): return n
        else: return 0
    flatten([[A145677(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Dec 23 2021

Formula

T(n, k) = A158821(n,n-k).
1 + Sum_{k= 1..n} T(n,k) *(k-1) = A002061(n).
From G. C. Greubel, Dec 23 2021: (Start)
Sum_{k=0..n} T(n, k) = A000027(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A158416(n) = A152271(n+1). (End)

Extensions

Edited by R. J. Mathar, Oct 02 2009

A128255 A114219(signed) * A007318.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 6, 5, 1, 3, 10, 13, 7, 1, 3, 15, 27, 23, 9, 1, 4, 21, 48, 57, 36, 1, 4, 28, 78, 118, 104, 52, 13, 1, 5, 36, 118, 218, 246, 172, 71, 15, 1, 5, 45, 170, 370, 510, 458, 265, 93, 17, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 20 2007

Keywords

Comments

Row sums = A059570: (1, 2, 6, 14, 34, 78, 178,...).

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 3, 1;
2, 6, 5, 1;
3, 10, 13, 7, 1;
3, 15, 27, 23, 9, 1;
4, 21, 48, 57, 36, 11, 1;
...
		

Crossrefs

Formula

Let the signed version of A114219 {1; 0,1; 0,1,1; 0,-1,2,1; 0,1,-2,-3,4;...} = M; and P = Pascal's triangle, A007318. Then A128255 = A114219(signed) * A007318.

A128261 a(n) = tau(n) + (n-1)*tau(n-1).

Original entry on oeis.org

1, 3, 6, 9, 14, 14, 26, 18, 35, 31, 42, 28, 74, 30, 60, 65, 82, 40, 110, 44, 124, 88, 90, 54, 195, 79, 108, 114, 170, 66, 242, 68, 196, 136, 140, 149, 326, 78, 156, 164, 322, 90, 338, 92, 270, 274, 186, 104, 483, 153, 304, 210, 314, 114, 436, 228, 452, 232
Offset: 1

Views

Author

Gary W. Adamson, Feb 21 2007

Keywords

Examples

			a(5) = 14 = (5 + 4 + 0 + 4 + 1), where (5, 4, 0, 4, 1) = row 5 of A128260.
		

Crossrefs

Row sums of A128260.
Cf. A000005 (tau), A128229, A051731.

Programs

  • Mathematica
    Table[DivisorSigma[0,n]+(n-1)DivisorSigma[0,n-1],{n,60}] (* Harvey P. Dale, Sep 17 2020 *)
  • PARI
    a(n)={numdiv(n) + if(n > 1, (n-1)*numdiv(n-1))} \\ Andrew Howroyd, Aug 09 2018

Extensions

Name changed and terms a(11) and beyond from Andrew Howroyd, Aug 09 2018
Previous Showing 11-15 of 15 results.