cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A349057 Numbers k such that the k-th composition in standard order is not weakly alternating.

Original entry on oeis.org

37, 46, 52, 53, 69, 75, 78, 92, 93, 101, 104, 105, 107, 110, 116, 117, 133, 137, 139, 142, 150, 151, 156, 157, 165, 174, 180, 181, 184, 185, 186, 187, 190, 197, 200, 201, 203, 206, 208, 209, 210, 211, 214, 215, 220, 221, 229, 232, 233, 235, 238, 244, 245, 261
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
   37: (3,2,1)
   46: (2,1,1,2)
   52: (1,2,3)
   53: (1,2,2,1)
   69: (4,2,1)
   75: (3,2,1,1)
   78: (3,1,1,2)
   92: (2,1,1,3)
   93: (2,1,1,2,1)
  101: (1,3,2,1)
  104: (1,2,4)
  105: (1,2,3,1)
  107: (1,2,2,1,1)
  110: (1,2,1,1,2)
  116: (1,1,2,3)
  117: (1,1,2,2,1)
		

Crossrefs

The strong case is A345168, complement A345167, counted by A345192.
The strong anti-run case is A345169, counted by A345195.
Including all non-anti-runs gives A348612, complement A333489.
These compositions are counted by A349053, complement A349052.
The directed cases are counted by A129852 (incr.) and A129853 (decr.).
The complement for patterns is A349058, strong A345194.
The complement for ordered factorizations is A349059, strong A348610.
Partitions of this type are counted by A349061, complement A349060.
Partitions of this type are ranked by A349794.
Non-strict partitions of this type are counted by A349796.
Permutations of prime indices of this type are counted by A349797.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, complement A261983.
A011782 counts compositions.
A025047 counts alternating/wiggly compositions, directed A025048, A025049.
A345164 counts alternating permutations of prime indices, weak A349056.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349054 counts strict alternating compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    whkQ[y_]:=And@@Table[If[EvenQ[m], y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[0,100],!whkQ[stc[#]]&&!whkQ[-stc[#]]&]

A348610 Number of alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 12, 1, 3, 3, 6, 1, 11, 1, 7, 3, 3, 3, 15, 1, 3, 3, 12, 1, 11, 1, 6, 6, 3, 1, 23, 1, 6, 3, 6, 1, 12, 3, 12, 3, 3, 1, 28, 1, 3, 6, 12, 3, 11, 1, 6, 3, 11, 1, 33, 1, 3, 6, 6, 3, 11, 1, 23, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The alternating ordered factorizations of n = 1, 6, 12, 16, 24, 30, 32, 36:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3                   3*6*2
                                                     6*2*3
                                                     2*3*2*3
                                                     3*2*3*2
		

Crossrefs

The additive version (compositions) is A025047 ranked by A345167.
The complementary additive version is A345192, ranked by A345168.
Dominated by A348611 (the anti-run version) at positions A122181.
The complement is counted by A348613.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A347463 counts ordered factorizations with integer alternating product.
A348379 counts factorizations w/ an alternating permutation.
A348380 counts factorizations w/o an alternating permutation.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] == Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],wigQ]],{n,100}]

A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2021

Keywords

Comments

First differs from A348383 at a(216) = 27, A348383(216) = 28.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
These permutations are ordered factorizations of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins for n > 0 is a(n) + 1 if n is a perfect square; otherwise a(n).

Examples

			The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72:
  4    12     24     30     36       48       60       64       72
  2*2  2*6    3*8    5*6    4*9      6*8      2*30     8*8      8*9
       3*4    4*6    2*15   6*6      2*24     3*20     2*32     2*36
       2*2*3  2*12   3*10   2*18     3*16     4*15     4*16     3*24
              2*2*6  2*3*5  3*12     4*12     5*12     2*4*8    4*18
              2*3*4         2*2*9    2*3*8    6*10     2*2*16   6*12
                            2*3*6    2*4*6    2*5*6    2*2*4*4  2*4*9
                            3*3*4    3*4*4    3*4*5             2*6*6
                            2*2*3*3  2*2*12   2*2*15            3*3*8
                                     2*2*3*4  2*3*10            3*4*6
                                              2*2*3*5           2*2*18
                                                                2*3*12
                                                                2*2*3*6
                                                                2*3*3*4
                                                                2*2*2*3*3
The a(270) = 19 factorizations:
  (2*3*5*9)   (5*6*9)   (3*90)   (270)
  (3*3*5*6)   (2*3*45)  (5*54)
  (2*3*3*15)  (2*5*27)  (6*45)
              (2*9*15)  (9*30)
              (3*3*30)  (10*27)
              (3*5*18)  (15*18)
              (3*6*15)  (2*135)
              (3*9*10)
Note that (2*3*3*3*5) is separable but has no alternating permutations.
		

Crossrefs

Partitions not of this type are counted by A344654, ranked by A344653.
Partitions of this type are counted by A344740, ranked by A344742.
The complement is counted by A347706, without twins A348380.
The case without twins is A348379.
Dominates A348383, the separable case.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}]]],{n,100}]

Formula

For n > 1, a(n) = A335434(n) + A010052(n).

A344652 Number of permutations of the prime indices of n with no adjacent triples (..., x, y, z, ...) such that x <= y <= z.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 1, 1, 5, 1, 2, 2, 2, 1, 0, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 7, 1, 2, 2, 0, 2, 5, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 2, 5, 1, 0, 0, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The permutations for n = 2, 6, 8, 30, 36, 60, 180, 210, 360:
  (1)  (12)  (132)  (1212)  (1213)  (12132)  (1324)  (121213)
       (21)  (213)  (2121)  (1312)  (13212)  (1423)  (121312)
             (231)  (2211)  (1321)  (13221)  (1432)  (121321)
             (312)          (2131)  (21213)  (2143)  (131212)
             (321)          (2311)  (21312)  (2314)  (132121)
                            (3121)  (21321)  (2413)  (132211)
                            (3211)  (22131)  (2431)  (212131)
                                    (23121)  (3142)  (213121)
                                    (23211)  (3214)  (213211)
                                    (31212)  (3241)  (221311)
                                    (32121)  (3412)  (231211)
                                    (32211)  (3421)  (312121)
                                             (4132)  (321211)
                                             (4213)
                                             (4231)
                                             (4312)
                                             (4321)
		

Crossrefs

All permutations of prime indices are counted by A008480.
The case of permutations is A049774.
Avoiding (3,2,1) also gives A344606.
The wiggly case is A345164.
A001250 counts wiggly permutations.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions, ranked by A345168.
Counting compositions by patterns:
- A102726 avoiding (1,2,3).
- A128761 avoiding (1,2,3) adjacent.
- A335514 matching (1,2,3).
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z]&]],{n,100}]

A349054 Number of alternating strict compositions of n. Number of alternating (up/down or down/up) permutations of strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 155, 193, 255, 339, 443, 569, 841, 1019, 1365, 1743, 2295, 2879, 3785, 5151, 6417, 8301, 10625, 13567, 17229, 21937, 27509, 37145, 45425, 58345, 73071, 93409, 115797, 147391, 182151, 229553, 297061, 365625
Offset: 0

Views

Author

Gus Wiseman, Dec 21 2021

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The case starting with an increase (or decrease, it doesn't matter in the enumeration) is counted by A129838.

Examples

			The a(1) = 1 through a(7) = 11 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)
                          (3,2)  (4,2)    (3,4)
                          (4,1)  (5,1)    (4,3)
                                 (1,3,2)  (5,2)
                                 (2,1,3)  (6,1)
                                 (2,3,1)  (1,4,2)
                                 (3,1,2)  (2,1,4)
                                          (2,4,1)
                                          (4,1,2)
		

Crossrefs

Ranking sequences are put in parentheses below.
This is the strict case of A025047/A025048/A025049 (A345167).
This is the alternating case of A032020 (A233564).
The unordered case (partitions) is A065033.
The directed case is A129838.
A001250 = alternating permutations (A349051), complement A348615 (A350250).
A003242 = Carlitz (anti-run) compositions, complement A261983.
A011782 = compositions, unordered A000041.
A345165 = partitions without an alternating permutation (A345171).
A345170 = partitions with an alternating permutation (A345172).
A345192 = non-alternating compositions (A345168).
A345195 = non-alternating anti-run compositions (A345169).
A349800 = weakly but not strongly alternating compositions (A349799).
A349052 = weakly alternating compositions, complement A349053 (A349057).

Programs

  • Maple
    g:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))
        end:
    b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 2, 0), b(n-k, k)+b(n-k, k-1)))
        end:
    a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2))-1:
    seq(a(n), n=0..46);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],wigQ]],{n,0,15}]

Formula

a(n) = 2 * A129838(n) - 1.
G.f.: Sum_{n>0} A001250(n)*x^(n*(n+1)/2)/Product_{k=1..n}(1-x^k).

A350252 Number of non-alternating patterns of length n.

Original entry on oeis.org

0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
Conjecture: Also the number of non-weakly up/down (or down/up) patterns of length n. For example:
- The a(3) = 7 non-weakly up/down patterns:
(121), (122), (123), (132), (221), (231), (321)
- The a(3) = 7 non-weakly down/up patterns:
(112), (123), (211), (212), (213), (312), (321)
- The a(3) = 7 non-alternating patterns (see example for more):
(111), (112), (122), (123), (211), (221), (321)

Examples

			The a(2) = 1 and a(3) = 7 non-alternating patterns:
  (1,1)  (1,1,1)
         (1,1,2)
         (1,2,2)
         (1,2,3)
         (2,1,1)
         (2,2,1)
         (3,2,1)
The a(4) = 53 non-alternating patterns:
  2112   3124   4123   1112   2134   1234   3112   2113   1123
  2211   3214   4213   1211   2314   1243   3123   2123   1213
  2212   3412   4312   1212   2341   1324   3211   2213   1223
         3421   4321   1221   2413   1342   3212   2311   1231
                       1222   2431   1423   3213   2312   1232
                                     1432   3312   2313   1233
                                            3321   2321   1312
                                                   2331   1321
                                                          1322
                                                          1323
                                                          1332
		

Crossrefs

The unordered version is A122746.
The version for compositions is A345192, ranked by A345168, weak A349053.
The complement is counted by A345194, weak A349058.
The version for factorizations is A348613, complement A348610, weak A350139.
The strict case (permutations) is A348615, complement A001250.
The weak version for partitions is A349061, complement A349060.
The weak version for perms of prime indices is A349797, complement A349056.
The weak version is A350138.
The version for perms of prime indices is A350251, complement A345164.
A000670 = patterns (ranked by A333217).
A003242 = anti-run compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]

Formula

a(n) = A000670(n) - A345194(n).

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 04 2022

A349799 Numbers k such that the k-th composition in standard order is weakly alternating but has at least two adjacent equal parts.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 79, 83, 84, 85, 86, 87, 90, 91, 94, 95, 99, 100, 103, 106, 111, 112, 113, 114, 115, 118, 119, 120, 121, 122, 123, 124, 125
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
This sequence ranks compositions that are weakly but not strongly alternating.

Examples

			The terms and corresponding compositions begin:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  23: (2,1,1,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

Partitions of this type are counted by A349795, ranked by A350137.
Permutations of prime indices of this type are counted by A349798.
These compositions are counted by A349800.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345164 = alternating permutations of prime indices, with twins A344606.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345166 = separable partitions with no alternations, ranked by A345173.
A345192 = non-alternating compositions, ranked by A345168.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349056 = weak alternations of prime indices, complement A349797.
A349060 = weak alternations of partitions, complement A349061.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[0,100],(whkQ[stc[#]]||whkQ[-stc[#]])&&MatchQ[stc[#],{_,x_,x_,_}]&]

Formula

A349794 Numbers whose prime signature has an odd term other than the first or last.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 105, 110, 114, 120, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 182, 186, 190, 195, 204, 210, 220, 222, 228, 230, 231, 238, 240, 246, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286, 290, 294, 300, 308
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also numbers whose multiset of prime factors is not weakly alternating, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict decreases are allowed.

Examples

			The terms and their prime indices begin:
   30: {1,2,3}
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
		

Crossrefs

The complement for compositions is A025047, ranked by A345167.
Signatures of this type are counted by A274230, complement A027383.
The strong case is A289553, complement A167171.
The strong case for compositions is A345192, ranked by A345168.
The version for compositions is A349053, ranked by A349057.
These partitions are counted by A349061, complement A349060, strong A349801.
The non-strict case is counted by A349795.
A001250 counts alternating permutations, complement A348615.
A096441 counts weakly alternating partitions if 0 is appended.
A345164 counts alternating permutations of prime indices, weak A349056.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349052 counts weakly alternating compositions.
A349059 counts weakly alternating ordered factorizations, strong A348610.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]>1&&!And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

A350354 Number of up/down (or down/up) patterns of length n.

Original entry on oeis.org

1, 1, 1, 3, 11, 51, 281, 1809, 13293, 109899, 1009343, 10196895, 112375149, 1341625041, 17249416717, 237618939975, 3491542594727, 54510993341523, 901106621474801, 15723571927404189, 288804851413993941, 5569918636750820751, 112537773142244706427
Offset: 0

Views

Author

Gus Wiseman, Jan 16 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A patten is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase.
A pattern is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase. For example, the partition (3,2,2,2,1) has no up/down permutations, even though it does have the anti-run permutation (2,3,2,1,2).
Conjecture: Also the half the number of weakly up/down patterns of length n.
These are the values of the Euler zig-zag polynomials A205497 evaluated at x = 1/2 and normalized by 2^n. - Peter Luschny, Jun 03 2024

Examples

			The a(0) = 1 through a(4) = 11 patterns:
  ()  (1)  (1,2)  (1,2,1)  (1,2,1,2)
                  (1,3,2)  (1,2,1,3)
                  (2,3,1)  (1,3,1,2)
                           (1,3,2,3)
                           (1,3,2,4)
                           (1,4,2,3)
                           (2,3,1,2)
                           (2,3,1,3)
                           (2,3,1,4)
                           (2,4,1,3)
                           (3,4,1,2)
		

Crossrefs

The version for permutations is A000111, undirected A001250.
For compositions we have A025048, down/up A025049, undirected A025047.
This is the up/down (or down/up) case of A345194.
A205497 are the Euler zig-zag polynomials.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns.
A019536 counts necklace patterns.
A226316 counts patterns avoiding (1,2,3), weakly A052709.
A335515 counts patterns matching (1,2,3).
A349058 counts weakly alternating patterns.
A350252 counts non-alternating patterns.
Row sums of A079502.

Programs

  • Maple
    # Using the recurrence by Kyle Petersen from A205497.
    G := proc(n) option remember; local F;
    if n = 0 then 1/(1 - q*x) else F := G(n - 1);
    simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    A350354 := n -> 2^n*subs({p = 1, q = 1, x = 1/2}, G(n)*(1 - x)^(n + 1)):
    seq(A350354(n), n = 0..22);  # Peter Luschny, Jun 03 2024
  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]
    				
  • PARI
    F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)}
    R(n,k) = {Vec(if(k==1, 0, F(k-2,-x)/F(k-1,x)-1) + x + O(x*x^n))}
    seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022

Formula

a(n > 2) = A344605(n)/2.
a(n > 1) = A345194(n)/2.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 04 2022

A349801 Number of integer partitions of n into three or more parts or into two equal parts.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 11, 18, 25, 37, 50, 71, 94, 128, 168, 223, 288, 376, 480, 617, 781, 991, 1243, 1563, 1945, 2423, 2996, 3704, 4550, 5589, 6826, 8333, 10126, 12293, 14865, 17959, 21618, 25996, 31165, 37318, 44562, 53153, 63239, 75153, 89111, 105535, 124730
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2021

Keywords

Comments

This sequence arose as the following degenerate case. If we define a sequence to be alternating if it is alternately strictly increasing and strictly decreasing, starting with either, then a(n) is the number of non-alternating integer partitions of n. Under this interpretation:
- The non-strict case is A047967, weak A349796, weak complement A349795.
- The complement is counted by A065033(n) = ceiling(n/2) for n > 0.
- These partitions are ranked by A289553 \ {1}, complement A167171 \/ {1}.
- The version for compositions is A345192, ranked by A345168.
- The weak version for compositions is A349053, ranked by A349057.
- The weak version is A349061, complement A349060, ranked by A349794.

Examples

			The a(2) = 1 through a(7) = 11 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)
               (211)   (311)    (222)     (331)
               (1111)  (2111)   (321)     (421)
                       (11111)  (411)     (511)
                                (2211)    (2221)
                                (3111)    (3211)
                                (21111)   (4111)
                                (111111)  (22111)
                                          (31111)
                                          (211111)
                                          (1111111)
		

Crossrefs

A000041 counts partitions, ordered A011782.
A001250 counts alternating permutations, complement A348615.
A004250 counts partitions into three or more parts, strict A347548.
A025047/A025048/A025049 count alternating compositions, ranked by A345167.
A096441 counts weakly alternating 0-appended partitions.
A345165 counts partitions w/ no alternating permutation, complement A345170.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,x_}|{,,__}]&]],{n,0,10}]

Formula

a(1) = 0; a(n > 0) = A000041(n) - ceiling(n/2).
Previous Showing 11-20 of 22 results. Next