cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A304964 Expansion of 1/(1 - Sum_{i>=1, j>=1, k>=1, l>=1} x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 5, 13, 47, 133, 443, 1333, 4263, 13143, 41419, 128791, 403815, 1259639, 3941579, 12310299, 38492034, 120271953, 375964616, 1174935195, 3672413322, 11477465221, 35872928244, 112117013835, 350417746650, 1095202995267, 3422999582632, 10698350241417, 33437065631262, 104505382585023
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Invert transform of A007426.

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(A(j, 4)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 29; CoefficientList[Series[1/(1 - Sum[x^(i j k l), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Sum[DivisorSigma[0, d] DivisorSigma[0, k/d], {d, Divisors[k]}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[DivisorSigma[0, d] DivisorSigma[0, k/d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A007426(k)*x^k).

A327738 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j^2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 37, 76, 158, 326, 672, 1386, 2862, 5906, 12187, 25148, 51900, 107103, 221023, 456110, 941256, 1942423, 4008481, 8272094, 17070712, 35227975, 72698206, 150023632, 309596255, 638898274, 1318462339, 2720844607, 5614870612, 11587126980
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A046951.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
          nops(select(issqr, numtheory[divisors](i))), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 23 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^(k^2))).
G.f.: 1 / (1 - Sum_{k>=1} (theta_3(x^k) - 1) / 2), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A046951(k) * a(n-k).

A307241 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1)*d(k+1)*a(n-k), where d() is the number of divisors (A000005).

Original entry on oeis.org

1, 2, 2, 3, 6, 12, 23, 42, 75, 135, 248, 460, 849, 1554, 2837, 5192, 9527, 17490, 32083, 58809, 107781, 197578, 362280, 664320, 1218069, 2233202, 4094289, 7506602, 13763219, 25234674, 46266927, 84828138, 155528132, 285154061, 522819002, 958568628, 1757496665, 3222295912
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) DivisorSigma[0, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 37}]
    nmax = 37; CoefficientList[Series[-x/Sum[(-x)^k/(1 - (-x)^k), {k, 1, nmax + 1}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[1/D[Log[Product[(1 - (-x)^k)^(1/k), {k, 1, nmax + 1}]], x], {x, 0, nmax}], x]

Formula

G.f.: -x / Sum_{k>=1} (-x)^k/(1 - (-x)^k).
G.f.: 1 / (d/dx) log(Product_{k>=1} (1 - (-x)^k)^(1/k)).

A321190 a(n) = [x^n] 1/(1 - Sum_{k>=1} k^n*x^k/(1 - x^k)).

Original entry on oeis.org

1, 1, 6, 47, 778, 25476, 1752936, 242632397, 70015221566, 41446777283255, 49999934258165654, 125272856707074638221, 641938223803783115191706, 6731818441446626626586172740, 146378489075644780343627471981694, 6505906463580477520696075719916583118
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series((1-add(k^n*x^k/(1-x^k),k=1..n))^(-1),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 29 2018
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[k^n x^k/(1 - x^k), {k, 1, n}]), {x, 0, n}], {n, 0, 15}]
    Table[SeriesCoefficient[1/(1 - Sum[DivisorSigma[n, k] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 15}]
    Table[SeriesCoefficient[1/(1 - Sum[Sum[j^n x^(i j), {j, 1, n}], {i, 1, n}]), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = [x^n] 1/(1 - Sum_{k>=1} sigma_n(k)*x^k).
a(n) = [x^n] 1/(1 - Sum_{i>=1, j>=1} j^n*x^(i*j)).
a(n) = [x^n] 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^k)^(k^(n-1)))).

A327798 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*(j + 1))).

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 9, 10, 25, 34, 72, 106, 215, 330, 635, 1025, 1899, 3141, 5713, 9602, 17213, 29292, 51982, 89149, 157249, 271027, 476037, 823386, 1442063, 2500015, 4370386, 7588146, 13248591, 23026728, 40169991, 69865026, 121811765, 211954826, 369412910
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2019

Keywords

Comments

Invert transform of A032741.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    G:= 1/(1-add(x^(2*k)/(1-x^k),k=1..(N+1)/2)):
    S:= series(G,x,N+1):
    seq(coeff(S,x,i),i=0..N); # Robert Israel, Jan 10 2023
  • Mathematica
    nmax = 38; CoefficientList[Series[1/(1 - Sum[x^(2 k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[(DivisorSigma[0, k] - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 38}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(2*k) / (1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A032741(k) * a(n-k).

A352839 Expansion of g.f. 1/(1 - Sum_{k>=1} sigma_k(k) * x^k).

Original entry on oeis.org

1, 1, 6, 39, 370, 4132, 59288, 990705, 19577018, 439550259, 11142216938, 313147651821, 9680830606850, 325944181383936, 11875777329091878, 465292113335910106, 19507503314546762246, 871248546067010133794, 41295079536653463057146
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, sigma(k, k)*x^k)))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_k(k) * a(n-k).

A353005 Decimal expansion of the root of the equation Sum_{k>0} x^k/(1-x^k) = 1.

Original entry on oeis.org

4, 0, 6, 1, 4, 8, 0, 0, 5, 0, 0, 1, 2, 4, 7, 2, 2, 8, 8, 6, 8, 9, 5, 8, 6, 0, 3, 0, 5, 9, 0, 4, 1, 9, 4, 5, 5, 6, 2, 9, 4, 0, 1, 9, 3, 9, 3, 6, 8, 7, 2, 4, 3, 2, 0, 6, 7, 0, 5, 4, 4, 9, 3, 6, 4, 7, 6, 6, 4, 1, 6, 6, 7, 7, 4, 7, 5, 2, 7, 9, 1, 1, 8, 5, 6, 7, 8, 7, 3, 6, 0, 9, 3, 5, 9, 6, 5, 7, 3, 1, 9, 0, 9, 1, 2, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2022

Keywords

Examples

			0.40614800500124722886895860305904194556294019393687243206705449364766416677475...
		

Crossrefs

Cf. A129921.

Programs

  • Mathematica
    RealDigits[x/.FindRoot[QPolyGamma[0, 1, x]==Log[x/(1-x)], {x, 1/2}, WorkingPrecision->110]][[1]]

Formula

Root of the equation Sum_{k>0} A000005(k)*x^k = 1.
Equals lim_{n->infinity} 1/A129921(n)^(1/n).

A305049 Expansion of 1/(1 - Sum_{k>=1} tau_k(k)*x^k), where tau_k(k) = number of ordered k-factorizations of k (A163767).

Original entry on oeis.org

1, 1, 3, 8, 27, 67, 216, 569, 1747, 4812, 14041, 39483, 115408, 326385, 941735, 2684170, 7725097, 22063737, 63354066, 181223899, 519883185, 1488316952, 4266788191, 12219763777, 35023995792, 100326757107, 287503501905, 823654031283, 2360146144917, 6761847714698, 19374935267810
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2018

Keywords

Comments

Invert transform of A163767.

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(A(j$2)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 24 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[1/(1 - Sum[Times @@ (Binomial[# + k - 1, k - 1] & /@ FactorInteger[k][[All, 2]]) x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Times @@ (Binomial[# + k - 1, k - 1] & /@ FactorInteger[k][[All, 2]]) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A163767(k)*x^k).

A318493 Expansion of 1/(1 - Sum_{i>=1, j>=1} i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 5, 15, 53, 165, 561, 1807, 5993, 19586, 64491, 211466, 695101, 2281614, 7494995, 24610588, 80829373, 265437828, 871738976, 2862815763, 9401768055, 30875971366, 101399191222, 333001988025, 1093603789613, 3591473940515, 11794667169894, 38734550365835, 127207121681103, 417757532953031
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(add(i*j*x^(i*j),j=1..100),i=1..100)),x=0,30): seq(coeff(a,x,n),n=0..29); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Sum[i j x^(i j), {i, 1, nmax}], {j, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[k x^k/(1 - x^k)^2, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[k DivisorSigma[0, k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[k DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} k*x^k/(1 - x^k)^2).
G.f.: 1/(1 - Sum_{k>=1} k*d(k)*x^k), where d(k) = number of divisors of k (A000005).
a(0) = 1; a(n) = Sum_{k=1..n} A038040(k)*a(n-k).
a(n) ~ c / r^n, where r = 0.304499876501217750838861744045680232405337905509126... is the root of the equation Sum_{k>=1} k*r^k/(1 - r^k)^2 = 1 and c = 0.44152042515136849968144466258954953693306684400261343177792428746297872748... - Vaclav Kotesovec, Aug 28 2018

A327764 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j*(j + 1)/2)).

Original entry on oeis.org

1, 1, 2, 5, 10, 21, 47, 99, 211, 455, 973, 2081, 4464, 9558, 20466, 43848, 93914, 201140, 430844, 922818, 1976553, 4233613, 9067960, 19422576, 41601229, 89105550, 190854784, 408791400, 875589076, 1875421302, 4016959325, 8603912899, 18428694036, 39472363286
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 24 2019

Keywords

Comments

Invert transform of A007862.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2)/(1 - x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k*(k + 1)/2) / (1 - x^(k*(k + 1)/2))).
a(0) = 1; a(n) = Sum_{k=1..n} A007862(k) * a(n-k).
Previous Showing 11-20 of 21 results. Next