cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A263634 Irregular triangle read by rows: row n gives coefficients of n-th logarithmic polynomial L_n(x_1, x_2, ...) with monomials sorted into standard order.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -6, 12, -4, -3, 1, 24, -60, 20, 30, -5, -10, 1, -120, 360, -120, -270, 30, 120, 30, -6, -15, -10, 1, 720, -2520, 840, 2520, -210, -1260, -630, 42, 210, 140, 210, -7, -21, -35, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2015

Keywords

Comments

"Standard order" here means as produced by Maple's "sort" command.
From Petros Hadjicostas, May 27 2020: (Start)
According to the Maple help files for the "sort" command, polynomials in multiple variables are "sorted in total degree with ties broken by lexicographic order (this is called graded lexicographic order)."
Thus for example, x_1^2*x_3 = x_1*x_1*x_3 > x_1*x_2*x_2 = x_1*x_2^2, while x_1^2*x_4 = x_1*x_1*x_4 > x_1*x_2*x_3. (End)
Row sums are 0 (for n > 1). Numbers of terms in rows are partition numbers A000041.
From Tom Copeland, Nov 06 2015: (Start)
With the formal Taylor series f(x) = 1 + x[1] x + x[2] x^2/2! + ... , the partition polynomials of this entry give d[log(f(x))]/dx = L_1(x[1]) + L_2(x[1], x[2]) x + L_3(...) x^2/2! + ..., and the coefficients of the reduced polynomials with x[n] = t are signed A028246.
The raising operator R = x + d[log(f(D)]/dD = x + L_1(x[1]) + L_2[x[1], x[2]) D + L_3(x[1], x[2], x[3]) D^2/2! + ... with D = d/dx generates an Appell sequence of polynomials, given umbrally by P_n(x[1], ..., x[n]; x) = (x[.] + x)^n = Sum_{k=0..n} binomial(n,k) x[k] * x^(n-k) = R^n 1 with the e.g.f. f(t)*e^(x*t) = exp[t P.(x[1], ..., x[.]; x)]. P_0 = x[0] = 1.
The umbral compositional inverse Appell sequence is generated by R = x - d[log(f(D))]/dD with e.g.f. e^(x*t)/f(t) = exp[t IP.(x[1], ..., x[.]; x)], so umbrally IP_n(x[1], ..., x[n]; P.(x[1], ..., x[n]; x)) = x^n = P_n(x[1], ..., x[n]; IP.(x[1], ..., x[n]; x)). An unsigned array for the reduced IP_n(x[1], ..., x[n]; x) polynomials with IP_0 = x[0] = 1 and x[n] = -1 for n > 0 is A154921, for which f(t) = 2 - e^t. (End)
From Tom Copeland, Sep 08 2016: (Start)
The Appell formalism allows a matrix representation in the power basis x^n of the raising operator R that incorporates this array's partition polynomials L_n(x[1], ..., x[n]):
VP_(n+1) = VP_n * R = VP_n * XPS^(-1) * MX * XPS, where XPS is the matrix formed from multiplying the n-th diagonal of the Pascal matrix PS of A007318 by the indeterminate x[n], with x[0] = 1 for the main diagonal of ones, i.e., XPS[n,k] = PS[n,k] * x[n-k]; the matrix MX is A129185; the matrix XPS^(-1) is the inverse of XPS, which can be formed by multiplying the diagonals of the Pascal matrix by the partition polynomials IPT(n, x[1], ..., x[n]) of A133314, i.e., XPS^(-1)[n,k] = PS[n,k] * IPT(n-k, x[1], ...); and VP_n is the row vector in the power basis representing the Appell polynomial P_n(x) formed from the basic sequence of moments 1, x[1], x[2], ..., i.e., umbrally P_n(x) = (x[.] + x)^n = Sum_{k=0..n} binomial(n,k) * x[k] * x^(n-k).
Then R = XPS^(-1) * MX * XPS is the Pascal matrix PS with an additional first superdiagonal of ones and the other lower diagonals multiplied by the partition polynomials of this array, i.e., R[n,k] = PS[n,k] * L_{n+1-k}(x[1], ..., x[n+1-k]) except for the first superdiagonal of ones.
Consistently, VP_n = (1, 0, 0, ...) * R^n = (1, 0, 0, ...) * XPS^(-1) * MX^n * XPS = (1, 0, 0, ...) * MX^n * XPS = the n-th row vector of XPS, which is the vector representation of P_n(x) = (x[.] + x)^n with x[0] = 1.
See the Copeland link for the umbral representation R = exp[g.*D] * x * exp[h.*D] that reflects the matrix representations.
The Stirling partition polynomials of the first kind St1_n(a[1], a[2], ..., a[n]) of A036039, the Stirling partition polynomials of the second kind St2_n(b[1], b[2], ..., b[n]) of A036040, and the refined Lah polynomials Lah_n[c[1], c[2], ..., c[n]) of A130561 are Appell sequences in the respective distinguished indeterminates a[1], b[1], and c[1]. Comparing the formulas for their raising operators with that in this entry, L_n(x[1], x[2], ..., x[n]) evaluates to
A) (n-1)! * a[n] for x[n] = St1_n(a[1], a[2], ..., a[n]);
B) b[n] for x[n] = St2_n(b[1], b[2], ..., b[n]);
C) n! * c[n] for x[n] = Lah_n(c[1], c[2], ..., c[n]).
Conversely, from the respective e.g.f.s (added Sep 12 2016)
D) x[n] = St1_n(L_1(x[1])/0!, ..., L_n(x[1], ..., x[n])/(n-1)!);
E) x[n] = St2_n(L_1(x[1]), ..., L_n(x[1], ..., x[n]));
F) x[n] = Lah_n(L_1(x[1])/1!, ..., L_n(x[1], ..., x[n])/n!).
Given only the Appell sequence with no closed form for the e.g.f., the raising operator can be generated using this formalism, as has been partially done for A134264. (End)
For the Appell sequences above, the raising operator is related to the recursion P_(n+1)(x) = x * P_n(x) + Sum_{k=0..n} binomial(n,k) * L_(n-k+1)(x[1], ..., x[n+k-1]) * P_k(x). For a derivation and connections to formal cumulants (c_n = L_n(x[1], ...)) and moments (m_n = x[n]), see the Copeland link on noncrossing partitions. With x = 0, the recursion reduces to x[n+1] = Sum_{k = 0..n} binomial(n,k) * L_(n-k+1)(x[1], ..., x[n+k-1]) * x[k] with x[0] = 1. This array is a differently ordered version of A127671. - Tom Copeland, Sep 13 2016
With x[n] = x^(n-1), a signed version of A130850 is obtained. - Tom Copeland, Nov 14 2016
See p. 2 of Getzler for a relation to stable graphs called necklaces used in computations for Deligne-Mumford-Knudsen moduli spaces of stable curves of genus 1. - Tom Copeland, Nov 15 2019
For a relation to a combinatorial Faa di Bruno Hopf algebra related to functional composition, as presented by Connes and Moscovici, see Figueroa et al. - Tom Copeland, Jan 17 2020
From Tom Copeland, May 17 2020: (Start)
The e.g.f. of an Appell sequence is f(t) e^(x*t) with f(0) = 1. Given the Laguerre-Polya class function f(t) = e^(-a*t^2 + b*t) Product_m (1 - t/z_m) e^(t/z_m) with a = 0 for simplicity (more generally a >= 0) and b real and where the product runs over all the zeros z_m of f(t) with all zeros real and Sum_m 1/(z_m)^2 convergent, the raising operator of the Appell polynomials is R = x + b - Sum_{k > 0} c_(k+1) D^k with c_k = Sum_m (1/(z_m)^k), i.e., traces of powers of the reciprocals of the zeros. From R in earlier comments, b = L_1(x_1) and otherwise c_k = -L_k(x_1, ..., x_k).
The Laguerre / Turan / de Gua inequalities (Csordas and Williamson and Skovgaard) imply that all the zeros of each Appell polynomial are real and simple and its extrema are local maxima above the x-axis and local minima below and are located above or below the zeros of the next lower degree Appell polynomial. (End)
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)
Ignoring signs, these polynomials appear in Schröder in the set of equations (II) on p. 343 and in Stewart's translation on p. 31. - Tom Copeland, Aug 25 2021

Examples

			The first few polynomials are:
(1) x[1].
(2) -x[1]^2 + x[2].
(3) 2*x[1]^3 - 3*x[1]*x[2] + x[3].
(4) -6*x[1]^4 + 12*x[1]^2*x[2] - 4*x[1]*x[3] - 3*x[2]^2 + x[4].
(5) 24*x[1]^5 - 60*x[1]^3*x[2] + 20*x[1]^2*x[3] + 30*x[1]*x[2]^2 - 5*x[1]*x[4] - 10*x[2]*x[3] + x[5].
(6) -120*x[1]^6 + 360*x[1]^4*x[2] - 120*x[1]^3*x[3] - 270*x[1]^2*x[2]^2 + 30*x[1]^2*x[4] + 120*x[1]*x[2]*x[3] + 30*x[2]^3 - 6*x[1]*x[5] - 15*x[2]*x[4] - 10*x[3]^2 + x[6].
...
[1]    1
[2]   -1,    1
[3]    2,   -3,     1
[4]   -6,   12,    -4,    -3,   1
[5]   24,  -60,    20,    30,  -5,  -10,   1
[6] -120,  360,  -120,  -270,  30,  120,  30, -6, -15, -10, 1
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 140, 156, 308.

Crossrefs

Programs

  • Maple
    triangle := proc(numrows) local E, s, Q;
    E := add(x[i]*t^i/i!, i=1..numrows);
    s := series(log(1 + E), t, numrows+1);
    Q := k -> sort(expand(k!*coeff(s, t, k)));
    seq(print(coeffs(Q(k))), k=1..numrows) end:
    triangle(6); # updated by Peter Luschny, May 27 2020

Formula

G.f.: Log(1 + Sum_{i >= 1} x_i*t^i/i!) = Sum_{n >= 1} L_n(x_1, x_2, ...)*t^n/n!. [Comtet, p. 140, Eq. [5a]. - corrected by Tom Copeland, Sep 08 2016]
Conjecture: row polynomials are R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) - Sum_{j=1..n-1} binomial(n-2,j-1)*R(j,k)*R(n-j,1) for n > 1, k > 0 with R(1,k) = x_k for k > 0. - Mikhail Kurkov, Mar 30 2025

A096162 Let n be a number partitioned as n = b_1 + 2*b_2 + ... + n*b_n; then T(n) = (b_1)! * (b_2)! * ... (b_n)!. Irregular triangle read by rows, T(n, k) for n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 1, 1, 2, 2, 24, 1, 1, 1, 2, 2, 6, 120, 1, 1, 1, 2, 2, 1, 6, 6, 4, 24, 720, 1, 1, 1, 1, 2, 1, 2, 2, 6, 2, 6, 24, 12, 120, 5040, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 6, 2, 4, 2, 24, 24, 6, 12, 120, 48, 720, 40320, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 6, 6, 2, 2, 2, 2, 6, 24, 6, 12, 4, 24, 120
Offset: 1

Views

Author

Alford Arnold, Jun 20 2004

Keywords

Comments

The partitions of number n are grouped by increasing length and in reverse lexical order for partitions of the same length.
This sequence is in the Abramowitz-Stegun ordering, see A036036. - Hartmut F. W. Hoft, Apr 25 2015

Examples

			Illustrating the formula:
1 1 2 1 3 6 1 4 6 12 24 ... A036038
1 1 1 1 3 1 1 4 3  6  1 ... A036040
so
1 1 2 1 1 6 1 1 2  2 24 ... this sequence.
.
From _Hartmut F. W. Hoft_, Apr 25 2015: (Start)
The sequence as a structured triangle. The column headings indicate the number of elements in the underlying partitions. Brackets indicate groups of the products of factorials for all partitions of the same length when there is more than one partition.
     1   2        3        4     5    6
1:   1
2:   1   2
3:   1   1        6
4:   1  [1 2]     2       24
5:   1  [1 1]    [2 2]     6    120
6:   1  [1 1 2]  [2 1 6]  [6 4]  24  720
The partitions, their multiplicities and factorial products associated with the five entries in row n = 4 are:
partitions:         {4}, [{3, 1}, {2, 2}], {2, 1, 1}, {1, 1, 1, 1}
multiplicities:      1,  [{1, 1},  2],     {1, 2},     4
factorial products:  1!, [1!*1!, 2!],      1!*2!,      4!
(End)
		

References

  • Abramowitz and Stegun, Handbook of Mathematical Functions, p. 831, column "M_1" divided by "M_3."

Crossrefs

Row sums in A096161.
Row lengths in A000041.

Programs

  • Mathematica
    (* function a096162[ ] computes complete rows of the triangle *)
    row[n_] := Map[Apply[Times, Map[Factorial, Last[Transpose[Tally[#]]]]]&, GatherBy[IntegerPartitions[n], Length], {2}]
    triangle[n_] := Map[row, Range[n]]
    a096162[n_] := Flatten[triangle[n]]
    Take[a096162[9],90] (* data *)  (*Hartmut F. W. Hoft, Apr 25 2015 *)
  • SageMath
    from collections import Counter
    def A096162_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [h(p) for k in (0..n) for p in Partitions(n, length=k)]
    for n in (1..9): print(A096162_row(n)) # Peter Luschny, Nov 01 2019

Formula

T(n, k) = A036038(n,k) / A036040(n,k).
Appears to be n! / A130561(n); e.g., 4! / (24,24,12,12,1) = (1,1,2,2,24). - Tom Copeland, Nov 12 2017

Extensions

Edited and extended by Christian G. Bower, Jan 17 2006

A134134 Triangle of numbers obtained from the partition array A134133.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 24, 10, 2, 1, 120, 36, 10, 2, 1, 720, 204, 44, 10, 2, 1, 5040, 1104, 228, 44, 10, 2, 1, 40320, 7776, 1272, 244, 44, 10, 2, 1, 362880, 57600, 8760, 1320, 244, 44, 10, 2, 1, 3628800, 505440, 63936, 9096, 1352, 244, 44, 10, 2, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Comments

In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.

Examples

			[1];[2,1];[6,2,1];[24,10,2,1];[120,36,10,2,1];...
a(4,2)=10 from the sum over the numbers related to the partitions (1,3) and (2^2), namely
1!^1*3!^1 + 2!^2 = 6+4 = 10.
		

Crossrefs

Row sums A077365. Alternating row sums A134135.

Formula

a(n,m)=sum(product(j!^e(n,m,k,j),j=1..n),k=1..p(n,m)) if n>=m>=1, else 0, with p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,k,j) is the exponent of j in the k-th m part partition of n.

A134133 A certain partition array in Abramowitz-Stegun order (A-St order).

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 24, 6, 4, 2, 1, 120, 24, 12, 6, 4, 2, 1, 720, 120, 48, 36, 24, 12, 8, 6, 4, 2, 1, 5040, 720, 240, 144, 120, 48, 36, 24, 24, 12, 8, 6, 4, 2, 1, 40320, 5040, 1440, 720, 576, 720, 240, 144, 96, 72, 120, 48, 36, 24, 16, 24, 12, 8, 6, 4, 2, 1, 362880, 40320, 10080
Offset: 1

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Comments

The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Partition number array M_3(2)= A130561 divided by partition number array M_3 = M_3(1) = A036040.

Examples

			[1], [2,1], [6,2,1], [24,6,4,2,1], [120,24,12,6,4,2,1], ...
		

Crossrefs

With another ordering of the partitions this becomes A069123.
Cf. A134134 (triangle obtained by summing same m numbers).

Formula

a(n,k) = A130561(n,k)/A036040(n,k) (division of partition arrays M_3(2) by M_3).
a(n,k) = product(j!^e(n,k,j),j=1..n) with the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.

A134151 Triangle of numbers obtained from the partition array A134150.

Original entry on oeis.org

1, 4, 1, 28, 4, 1, 280, 44, 4, 1, 3640, 392, 44, 4, 1, 58240, 5544, 456, 44, 4, 1, 1106560, 80640, 5992, 456, 44, 4, 1, 24344320, 1519840, 88256, 6248, 456, 44, 4, 1, 608608000, 31420480, 1631392, 90048, 6248, 456, 44, 4, 1, 17041024000, 766525760, 33293120
Offset: 1

Views

Author

Wolfdieter Lang Nov 13 2007

Keywords

Comments

This triangle is named S2(4)'.
In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.

Examples

			[1]; [4,1]; [28,4,1]; [280,44,4,1]; [3640,392,44,4,1];...
		

Crossrefs

Cf. A134152 (row sums). A134272 (alternating row sums).
Cf. A134146 (S2(3)' triangle).

Formula

a(n,m)=sum(product(S2(4;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S2(4;j,1)= A007559(j) = A035469(j,1) = (3*j-2)!!!.

A119275 Inverse of triangle related to Padé approximation of exp(x).

Original entry on oeis.org

1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1
Offset: 0

Views

Author

Paul Barry, May 12 2006

Keywords

Comments

Inverse of A119274.
Row sums are (-1)^(n+1)*A000321(n+1).
Bell polynomials of the second kind B(n,k)(1,-2). - Vladimir Kruchinin, Mar 25 2011
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+2) (A001813) giving unsigned values and adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins
1,
-2, 1,
0, -6, 1,
0, 12, -12, 1,
0, 0, 60, -20, 1,
0, 0, -120, 180, -30, 1,
0, 0, 0, -840, 420, -42, 1,
0, 0, 0, 1680, -3360, 840, -56, 1,
0, 0, 0, 0, 15120, -10080, 1512, -72, 1
Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.
		

Crossrefs

Cf. A059344 (unsigned row reverse).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n<2,(n+1)*(-1)^n,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_matrix from A265605]
    # Unsigned values and an additional first column (1,0,0, ...).
    multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015

Formula

T(n,k) = [k<=n]*(-1)^(n-k)*(n-k)!*C(n+1,k+1)*C(k+1,n-k).
From Peter Bala, May 07 2012: (Start)
E.g.f.: exp(x*(t-t^2)) - 1 = x*t + (-2*x+x^2)*t^2/2! + (-6*x^2+x^3)*t^3/3! + (12*x^2-12*x^3+x^4)*t^4/4! + .... Cf. A059344. Let D denote the operator sum {k >= 0} (-1)^k/k!*x^k*(d/dx)^(2*k). The n-th row polynomial R(n,x) = D(x^n) and satisfies the recurrence equation R(n+1,x) = x*R(n,x)-2*n*x*R(n-1,x). The e.g.f. equals D(exp(x*t)).
(End)
From Tom Copeland, Oct 11 2016: (Start)
With initial index n = 1 and unsigned, these are the partition row polynomials of A130561 and A231846 with c_1 = c_2 = x and c_n = 0 otherwise. The first nonzero, unsigned element of each diagonal is given by A001813 (for each row, A001815) and dividing along the corresponding diagonal by this element generates A098158 with its first column removed (cf. A034839 and A086645).
The n-th polynomial is generated by (x - 2y d/dx)^n acting on 1 and then evaluated at y = x, e.g., (x - 2y d/dx)^2 1 = (x - 2y d/dx) x = x^2 - 2y evaluated at y = x gives p_2(x) = -2x + x^2.
(End)

A134146 Triangle of numbers obtained from the partition array A134145.

Original entry on oeis.org

1, 3, 1, 15, 3, 1, 105, 24, 3, 1, 945, 150, 24, 3, 1, 10395, 1485, 177, 24, 3, 1, 135135, 14805, 1620, 177, 24, 3, 1, 2027025, 191520, 16425, 1701, 177, 24, 3, 1, 34459425, 2687580, 208125, 16830, 1701, 177, 24, 3, 1, 654729075, 44552025, 2880360, 212985
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

This triangle is named S2(3)'.
In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.

Examples

			[1]; [3,1]; [15,3,1]; [105,24,3,1]; [945,150,24,3,1];...
		

Crossrefs

Cf. A134147 (row sums).
Cf. A134148 (allternating row sums).
Cf. A134134 (k=2 member of this triangle family).

Formula

a(n,m)=sum(product(S2(3;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S2(3;j,1)= A001147(j) = A035342(j,1) = (2*j-1)!!.

A134275 Triangle of numbers obtained from the partition array A134274.

Original entry on oeis.org

1, 5, 1, 45, 5, 1, 585, 70, 5, 1, 9945, 810, 70, 5, 1, 208845, 14895, 935, 70, 5, 1, 5221125, 284895, 16020, 935, 70, 5, 1, 151412625, 7055100, 309645, 16645, 935, 70, 5, 1, 4996616625, 192734100, 7526475, 315270, 16645, 935, 70, 5, 1, 184874815125
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

This triangle is named S2(5)'.
In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.

Examples

			Triangle begins:
  [1];
  [5,1];
  [45,5,1];
  [585,70,5,1];
  [9945,810,70,5,1];
  ...
		

Crossrefs

Cf. A134276 (row sums). A134277 (alternating row sums).
Cf. A134151 (S2(4)').

Formula

a(n,m) = sum(product(S2(5;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S2(5;j,1)= A007696(j) = A049029(j,1) = (4*j-3)(!^4), (quadruple- or 4-factorials).

A134280 Triangle of numbers obtained from the partition array A134279.

Original entry on oeis.org

1, 6, 1, 66, 6, 1, 1056, 102, 6, 1, 22176, 1452, 102, 6, 1, 576576, 32868, 1668, 102, 6, 1, 17873856, 779328, 35244, 1668, 102, 6, 1, 643458816, 23912064, 843480, 36540, 1668, 102, 6, 1, 26381811456, 812173824, 25416072, 857736, 36540, 1668, 102, 6, 1
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

This triangle is named S2(6)'.
In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.

Examples

			[1]; [6,1]; [66,6,1]; [1056,102,6,1]; [22176,1452,102,6,1]; ...
		

Crossrefs

Cf. A134275 (S2(5)').
Cf. A134281 (row sums).
Cf. A134282 (alternating row sums).

Formula

a(n,m)=sum(product(S2(6;j,1)^e(n,m,k,j),j=1..n),k=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,k,j) is the exponent of j in the k-th m part partition of n. S2(6;j,1) = A049385(n,1) = A008548(n) = (5*n-4)(!^5)(quintuple- or 5-factorials).

A321203 Irregular triangle T giving the coefficients of x^n = x^{2*e2 + 3*e3} of (1 + x^2 + x^3)^n, with the pair of nonnegative numbers [e2, e3] listed in row n of A321201, for n >= 2.

Original entry on oeis.org

2, 3, 6, 20, 15, 20, 105, 168, 70, 84, 504, 1260, 252, 1320, 2310, 495, 7920, 924, 12870, 10296, 10010, 45045, 3432, 3003, 100100, 45045, 120120, 240240, 12870, 74256, 680680, 194480, 18564, 1113840, 1225224, 48620, 1058148, 4232592, 831402, 542640, 8817900, 6046560, 184756
Offset: 2

Views

Author

Wolfdieter Lang, Nov 05 2018

Keywords

Comments

The row length is r(n), with r(n) = A008615(n+2) for n >= 2: [1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, ...].
The row sums give A176806(n).
For n = 0 with the trivial [e2, e3] = [0, 0] solution the multinomial is 1 with the row sum A176806(0) = 1. For n = 1 there is no solution (with row sum set to A176806(1) = 0).
This multinomial array for pairs [e2, e3] with 2*2e2 + 3*e3 = n, with nonnegative numbers e2 and e3, is obtained from the multinomial array n!/(e1!*e2!*e3!) with n = e1 + e2 + e3, giving the coefficient x_1^{e1}* x_2^{e2}*x_3^{e3} of (x_1 + x_2 + x_3)^n. Here, in order to find the coefficients of (1 + x^2 + x^3)^n, one sets x_1 = 1, x_2 = x^2 and x_3 = x^3. Hence n = e1 + e2 + e3, and the power of x^n becomes n = 2*e2 + 3*e3. Therefore, e1 = n - (e2 + e3), and the array gives n!/((n-(e2+e3))!*e2!*e3!).

Examples

			The triangle T(n, m), and the row sums begin:
n\m        0        1        2       3  ...  Row sums A176806(n)
2:         2                                         2
3:         3                                         3
4:         6                                         6
5:        20                                        20
6:        15       20                               35
7:       105                                       105
8:       168       70                              238
9:        84      504                              588
10:     1260      252                             1512
11:     1320     2310                             3630
12:      495     7920      924                    9339
13:    12870    10296                            23166
14:    10010    45045     3432                   58487
15:     3003   100100    45045                  148148
16:   120120   240240    12870                  373230
17:    74256   680680   194480                  949416
18:    18564  1113840  1225224   48620         2406248
19:  1058148  4232592   831402                 6122142
20:   542640  8817900  6046560  184756        15591856
...
------------------------------------------------------------------------------
n = 8: (1 + x^2 + x^3)^8 has coefficients 238 of x^n arising from the two [e2, e3] pairs [1, 2] and [4, 0], given in row n = 8 of A321201. The multinomial values are 8!/((8-3)!*1!*2!) = 168 and 8!/((8-4)!*4!*0!) = 70, summing to 238.
		

Crossrefs

Formula

T(n, m) is obtained from the pair(s) [e2, e3] given in row n of A321201 by n!/((n - (e2 +e3))!*e2!*e3!), for n >= 2 and m = 1, 2, ..., A008615(n+2).
Previous Showing 11-20 of 21 results. Next