cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A316224 a(n) = n*(2*n + 1)*(4*n + 1).

Original entry on oeis.org

0, 15, 90, 273, 612, 1155, 1950, 3045, 4488, 6327, 8610, 11385, 14700, 18603, 23142, 28365, 34320, 41055, 48618, 57057, 66420, 76755, 88110, 100533, 114072, 128775, 144690, 161865, 180348, 200187, 221430, 244125, 268320, 294063, 321402, 350385, 381060, 413475, 447678, 483717
Offset: 0

Views

Author

Bruno Berselli, Jun 27 2018

Keywords

Comments

Sums of the consecutive integers from A000384(n) to A000384(n+1)-1. This is the case s=6 of the formula n*(n*(s-2) + 1)*(n*(s-2) + 2)/2 related to s-gonal numbers.
The inverse binomial transform is 0, 15, 60, 48, 0, ... (0 continued).

Examples

			Row sums of the triangle:
|  0 |  ................................................................. 0
|  1 |  2  3  4  5  .................................................... 15
|  6 |  7  8  9 10 11 12 13 14  ........................................ 90
| 15 | 16 17 18 19 20 21 22 23 24 25 26 27  ........................... 273
| 28 | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  ............... 612
| 45 | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  .. 1155
...
where:
. first column is A000384,
. second column is A130883 (without 1),
. third column is A033816,
. diagonal is A014106,
. 0, 2, 8, 18, 32, 50, ... are in A001105.
		

Crossrefs

First bisection of A059270 and subsequence of A034828, A047866, A109900, A290168.
Sums of the consecutive integers from P(s,n) to P(s,n+1)-1, where P(s,k) is the k-th s-gonal number: A027480 (s=3), A055112 (s=4), A228888 (s=5).

Programs

  • GAP
    List([0..40], n -> n*(2*n+1)*(4*n+1));
    
  • Julia
    [n*(2*n+1)*(4*n+1) for n in 0:40] |> println
  • Magma
    [n*(2*n+1)*(4*n+1): n in [0..40]];
    
  • Maple
    seq(n*(2*n+1)*(4*n+1),n=0..40); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Table[n (2 n + 1) (4 n + 1), {n, 0, 40}]
  • Maxima
    makelist(n*(2*n+1)*(4*n+1), n, 0, 40);
    
  • PARI
    vector(40, n, n--; n*(2*n+1)*(4*n+1))
    
  • Python
    [n*(2*n+1)*(4*n+1) for n in range(40)]
    
  • Sage
    [n*(2*n+1)*(4*n+1) for n in (0..40)]
    

Formula

O.g.f.: 3*x*(5 + 10*x + x^2)/(1 - x)^4.
E.g.f.: x*(15 + 30*x + 8*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A258582(n).
a(n) = -3*A100157(-n).
Sum_{n>0} 1/a(n) = 2*(3 - log(4)) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 2*sqrt(2)*log(1+sqrt(2)) + (sqrt(2)-1/2)*Pi - 6. - Amiram Eldar, Sep 17 2022

A377137 Array read by rows (blocks). Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. Row n contains 3n/2 elements if n is even, and (n+1)/2 elements if n is odd; ; see Comments.

Original entry on oeis.org

1, 4, 2, 3, 6, 5, 12, 10, 8, 7, 9, 11, 15, 13, 14, 24, 22, 20, 18, 16, 17, 19, 21, 23, 28, 26, 25, 27, 40, 38, 36, 34, 32, 30, 29, 31, 33, 35, 37, 39, 45, 43, 41, 42, 44, 60, 58, 56, 54, 52, 50, 48, 46, 47, 49, 51, 53, 55, 57, 59, 66, 64, 62, 61, 63, 65, 84, 82, 80, 78, 76, 74, 72, 70, 68, 67, 69, 71, 73, 75, 77, 79, 81, 83, 91, 89, 87, 85, 86
Offset: 1

Views

Author

Boris Putievskiy, Oct 17 2024

Keywords

Comments

Row n has length A064455(n). The sequence A064455 is non-monotonic.
The array consists of two triangular arrays alternating row by row.
For odd n, row n consists of permutations of the integers from A001844((n-1)/2) to A265225(n-1). For even n, row n consists of permutations of the integers from A130883(n/2) to A265225(n-1).
These permutations are generated by the algorithm described A130517.
The sequence is an intra-block permutation of the positive integers.

Examples

			Array begins:
     k =  1   2   3   4   5   6
  n=1:    1;
  n=2:    4,  2,  3;
  n=3:    6,  5;
  n=4:   12, 10,  8,  7,  9, 11;
The triangular arrays alternate by row: n=1 and n=3 comprise one, and n=2 and n=4 comprise the other.
Subtracting (n^2 - 1)/2 if n is odd from each term in row n produces a permutation of 1 .. (n+1)/2. Subtracting (n^2 - n)/2 if n is even from each term in row n produces a permutation of 1 .. 3n/2:
  1,
  3, 1, 2,
  2, 1,
  6, 4, 2, 1, 3, 5,
  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{L,R, P,Result},L=Ceiling[Max[x/.NSolve[x*(2*(x-1)-Cos[Pi*(x-1)]+5)-4*n==0,x,Reals]]]; R=n-If[EvenQ[L],(L^2-L)/2,(L^2-1)/2]; P[(L+1)*(2*L-(-1)^L+5)/4]=If[EvenQ[L],3L/2,(L+1)/2]; P[3]=2; P= Abs[2*R-If[EvenQ[L],3L/2,(L+1)/2]-If[2*R<=If[EvenQ[L],3L/2,(L+1)/2]+1,2,1]]; Res=P+If[EvenQ[L],(L^2-L)/2,(L^2-1)/2]; Result=Res; Result] Nmax= 12; Table[a[n],{n,1,Nmax}]

Formula

Linear sequence:
a(n) = P(n) + B(L(n)-1), where L(n) = ceiling(x(n)), x(n) is largest real root of the equation B(x) - n = 0. B(n) = (n+1)*(2*n-(-1)^n+5)/4 = A265225(n). P(n) = A162630(n)/2.
Array T(n,k) (see Example):
T(n, k) = P(n, k) + (n^2 - n)/2 if n is even, T(n, k) = P(n, k) + (n^2 - 1)/2 if n is odd, T(n, k) = P(n, k) + A265225(n-1). P(n, k) = |2k - 3n / 2 - 2| if n is even and if 2k <= 3n / 2 + 1, P(n, k) = |2k - 3n / 2 - 1| if n is even and if 2k > 3n / 2 + 1. P(n, k) = |2k - (n + 1) / 2 - 2| if n is odd and if 2k <= (n + 1) / 2 + 1, P(n, k) = |2k - (n + 1) / 2 - 1| if n is odd and if 2k > (n + 1) / 2 + 1. There are several special cases: P(n, 1) = 3n/2 if n is even, P(n, 1) = (n+1)/2 if n is odd. P(2, 2) = 1. P(n, n) = n/2 - 1 if n is even, P(n, n) = (n-3)/2 if n is odd.

A320530 T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9
Offset: 0

Views

Author

Keywords

Comments

Construct a length n ternary word over the alphabet {a, b, c} as follows: letters from the set {a, b} are only used in pairs of at most one, and consist of either (a,b), (b,a) or (b,b). Next, replace each occurrence of a, b and c with a length k binary word such that 'a' has exactly two letters 1, 'b' contains no 0's and 'c' has exactly one letter 0 (empty words otherwise, respectively). Then T(n,k) gives the number of length n*k binary words resulting from this substitution. First column follows from the next definition.
In Kauffman's language, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) having n tangles, of k half-twists respectively, such that the final diagram consists of two Jordan curves. This result can be achieved by assigning each tangle of the Pretzel knot a length k binary words in a way that letters 1 and 0 indicate the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (3*k, -3*k^2, k^3).

Examples

			Square array begins:
    1,  1,     1,     1,      1,       1,       1, ...
    0,  1,     2,     3,      4,       5,       6, ...
    1,  2,     7,    16,     29,      46,      67, ...
    0,  4,    26,    90,    220,     440,     774, ...
    0,  7,    88,   459,   1504,    3775,    7992, ...
    0, 11,   272,  2133,   9344,   29375,   74736, ...
    0, 16,   784,  9234,  54016,  212500,  649296, ...
    0, 22,  2144, 37908, 295936, 1456250, 5342112, ...
    ...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc.  Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
    abc: 001101, 001110;
    acb: 000111, 001011;
    cab: 010011, 100011;
    bac: 110001, 110010;
    bca: 110100, 111000;
    cba: 011100, 101100;
    bbc: 111101, 111110;
    bcb: 110111, 111011;
    cbb: 011111, 101111;
    ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Column 1 is column 2 of A300453.
Column 2 is column 2 of A300184.

Programs

  • Mathematica
    T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
    Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
  • Maxima
    t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
    u(n) := if n = 0 or n = 1 then 1 else 0$
    T(n, k) := if k = 0 then u(n) else t(n,k)$
    tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$

Formula

T(n,k) = k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1), k > 0.
T(n,k) = (3*k)*T(n-1,k) - (3*k^2)*T(n-2,k) + (k^3)*T(n-3,k), n > 3.
T(n,1) = A152947(n+1).
T(n,2) = A300451(n).
T(2,n) = A130883(n).
G.f. for columns: (1 - 2*k*x + (1 - k + 2*k^2)*x^2 )/(1 - k*x)^3.
E.g.f. for columns: ((1 - k + k^2)*x^2 + 2)*exp(k*x)/2.

A378626 Table T(n, k) read by upward antidiagonals. T(n,1) = A377137(n), T(n,2) = A377137(A377137(n)), T(n,3) = A377137(A377137(A377137(n))) and so on.

Original entry on oeis.org

1, 4, 1, 2, 3, 1, 3, 4, 2, 1, 6, 2, 3, 4, 1, 5, 5, 4, 2, 3, 1, 12, 6, 6, 3, 4, 2, 1, 10, 11, 5, 5, 2, 3, 4, 1, 8, 7, 9, 6, 6, 4, 2, 3, 1, 7, 10, 12, 8, 5, 5, 3, 4, 2, 1, 9, 12, 7, 11, 10, 6, 6, 2, 3, 4, 1, 11, 8, 11, 12, 9, 7, 5, 5, 4, 2, 3, 1, 15, 9, 10, 9, 11, 8, 12, 6, 6, 3, 4, 2, 1, 13, 14, 8, 7, 8, 9, 10, 11, 5, 5, 2, 3, 4, 1, 14, 15, 13, 10, 12, 10, 8, 7, 9, 6, 6, 4, 2
Offset: 1

Views

Author

Boris Putievskiy, Dec 02 2024

Keywords

Comments

The sequence A377137 generates infinite cyclic group under composition. The identity element is A000027.
Each column is array read by rows. Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block.
Row n has length A064455(n). The sequence A064455 is non-monotonic.
The array consists of two triangular arrays alternating row by row.
For odd n, row n consists of permutations of the integers from A001844((n-1)/2) to A265225(n-1). For even n, row n consists of permutations of the integers from A130883(n/2) to A265225(n-1).
Each column is an intra-block permutation of the positive integers.

Examples

			Table begins:
  k =      1   2   3   4   5   6
--------------------------------------
  n =  1:  1,  1,  1,  1,  1,  1, ...
  n =  2:  4,  3,  2,  4,  3,  2, ...
  n =  3:  2,  4,  3,  2,  4,  3, ...
  n =  4:  3,  2,  4,  3,  2,  4, ...
  n =  5:  6,  5,  6,  5,  6,  5, ...
  n =  6:  5,  6,  5,  6,  5,  6, ...
  n =  7: 12, 11,  9,  8, 10,  7, ...
  n =  8: 10,  7, 12, 11,  9,  8, ...
  n =  9:  8, 10,  7, 12, 11,  9, ...
  n = 10:  7, 12, 11,  9,  8, 10, ...
  n = 11:  9,  8, 10,  7, 12, 11, ...
  n = 12: 11,  9,  8, 10,  7, 12, ...
  n = 13: 15, 14, 13, 15, 14, 13, ...
  n = 14: 13, 15, 14, 13, 15, 14, ...
  n = 15: 14, 13, 15, 14, 13, 15, ...
Column k = 1 contains the start of A377137. Ord(T(1,1),T(2,1), ... T(15,1)) = 6, ord(T(1,1),T(2,1), ... T(24,1)) = 18, ord(T(1,1),T(2,1), ... T(45,1)) = 90, ord(T(1,1),T(2,1), ... T(112,1)) = 1260, where ord is order of permutation.
The first 6 antidiagonals are:
  1;
  4, 1;
  2, 3, 1;
  3, 4, 2, 1;
  6, 2, 3, 4, 1;
  5, 5, 4, 2, 3, 1;
		

Crossrefs

Cf. A000027, A064455 (row lengths), A265225, A377137, A378127.

Programs

  • Mathematica
    a[n_]:=Module[{L,R,P,Result},L=Ceiling[Max[x/.NSolve[x*(2*(x-1)-Cos[Pi*(x-1)]+5)-4*n==0,x,Reals]]];R=n-If[EvenQ[L],(L^2-L)/2,(L^2-1)/2]; P[(L+1)*(2*L-(-1)^L+5)/4]=If[EvenQ[L],3L/2,(L+1)/2];P[3]=2;P=Abs[2*R-If[EvenQ[L],3L/2,(L+1)/2]-If[2*R<=If[EvenQ[L],3L/2,(L+1)/2]+1,2,1]];Res=P+If[EvenQ[L],(L^2-L)/2,(L^2-1)/2];Result=Res;Result] (*A377137*)
    composeSequence[a_,n_,k_]:=Nest[a,n,k]
    Nmax=15;Kmax=6;T=Table[composeSequence[a,n,k],{n,1,Nmax},{k,1,Kmax}]

Formula

(T(1,k),T(2,k), ... T(A265225(n),k)) is permutation of the integers from 1 to A265225(n). (T(1,k),T(2,k), ... T(A265225(n),k)) = (T(1,1),T(2,1), ... T(A265225(n),1))^k.

A383464 a(n) = 8*n^2 - 5*n + 1.

Original entry on oeis.org

1, 4, 23, 58, 109, 176, 259, 358, 473, 604, 751, 914, 1093, 1288, 1499, 1726, 1969, 2228, 2503, 2794, 3101, 3424, 3763, 4118, 4489, 4876, 5279, 5698, 6133, 6584, 7051, 7534, 8033, 8548, 9079, 9626, 10189, 10768, 11363, 11974, 12601, 13244, 13903, 14578, 15269
Offset: 0

Views

Author

N. J. A. Sloane, Jun 26 2025

Keywords

Comments

This is equal to A139272(n) + 1, but has its own entry because of an important geometrical interpretation.
Definition: A k-legged Wu is a pencil of k semi-infinite lines originating from a common point.
A 2-legged Wu is a long-legged V (see A130883), and a 3-legged Wu is a long-legged Wu as in A140064.
Theorem (David Cutler, Jonathan Pei, and Edward Xiong, Jun 24 2025): a(n) is the maximum number of regions in the plane that can be formed from n copies of a 4-legged Wu.
Proof: See "Cutting a pancake with an exotic knife".

References

  • David O. H. Cutler and Neil J. A. Sloane, Cutting a pancake with an exotic knife, Paper in preparation, Sep 05 2025

Crossrefs

Programs

  • Magma
    I:=[1, 4, 23]; [n le 3 select I[n] else 3*Self(n-1)-3* Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 27 2025
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,4,23},50] (* Vincenzo Librandi, Jun 27 2025 *)

Formula

G.f.: (1 + x + 14*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(1 + 3*x + 8*x^2). - Stefano Spezia, Jun 30 2025

A185669 a(n) = 4*n^2 + 3*n + 2.

Original entry on oeis.org

2, 9, 24, 47, 78, 117, 164, 219, 282, 353, 432, 519, 614, 717, 828, 947, 1074, 1209, 1352, 1503, 1662, 1829, 2004, 2187, 2378, 2577, 2784, 2999, 3222, 3453, 3692, 3939, 4194, 4457, 4728, 5007, 5294, 5589, 5892, 6203, 6522, 6849, 7184, 7527, 7878, 8237, 8604, 8979, 9362, 9753, 10152, 10559, 10974, 11397, 11828
Offset: 0

Views

Author

Paul Curtz, Feb 09 2011

Keywords

Comments

Natural numbers A000027 written clockwise as a square spiral:
.
43--44--45--46--47--48--49
|
42 21--22--23--24--25--26
| | |
41 20 7---8---9--10 27
| | | | |
40 19 6 1---2 11 28
| | | | | |
39 18 5---4---3 12 29
| | | |
38 17--16--15--14--13 30
| |
37--36--35--34--33--32--31
.
Walking in straight lines away from the center:
1, 2, 11, ... = A054552(n) = 1 -3*n+4*n^2,
1, 8, 23, ... = A033951(n) = 1 +3*n+4*n^2,
1, 3, 13, ... = A054554(n+1) = 1 -2*n-4*n^2,
1, 7, 21, ... = A054559(n+1) = 1 +2*n+4*n^2,
1, 4, 15, ... = A054556(n+1) = 1 -n+4*n^2,
1, 6, 19, ... = A054567(n+1) = 1 +n+4*n^2,
1, 5, 17, ... = A053755(n) = 1 +4*n^2,
1, 9, 25, ... = A016754(n) = 1 +4*n+4*n^2 = (1+2*n)^2,
2, 8, 22, ... = 2*A084849(n) = 2 +2*n+4*n^2,
2, 12, 30, ... = A002939(n+1) = 2 +6*n+4*n^2,
2, 9, 24, ... = a(n) = 2 +3*n+4*n^2,
2, 10, 26, ... = A069894(n) = 2 +4*n+4*n^2,
3, 11, 27, ... = A164897(n) = 3 +4*n+4*n^2,
3, 12, 29, ... = A054552(n+1)+1 = 3 +5*n+4*n^2,
3, 14, 33, ... = A033991(n+1) = 3 +7*n+4*n^2,
3, 15, 35, ... = A000466(n+1) = 3 +8*n+4*n^2,
4, 14, 32, ... = 2*A130883(n+1) = 4 +6*n+4*n^2,
4, 16, 36, ... = A016742(n+1) = 4 +8*n+4*n^2 = (2+2*n)^2,
5, 18, 39, ... = A007742(n+1) = 5 +9*n+4*n^2,
5, 19, 41, ... = A125202(n+2) = 5+10*n+4*n^2.

Programs

Formula

a(n) = a(n-1) + 8*n - 1.
a(n) = 2*a(n-1) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (2 +3*x +3*x^2)/(1-x)^3 . - R. J. Mathar, Feb 11 2011
a(n) = A033954(n) + 2. - Bruno Berselli, Apr 10 2011
E.g.f.: (4*x^2 + 7*x + 2)*exp(x). - G. C. Greubel, Jul 09 2017

A199855 Inverse permutation to A210521.

Original entry on oeis.org

1, 4, 2, 5, 3, 6, 11, 7, 12, 8, 13, 9, 14, 10, 15, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42, 34, 43, 35, 44, 36, 45, 56, 46, 57, 47, 58, 48, 59, 49, 60, 50, 61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66, 79
Offset: 1

Views

Author

Boris Putievskiy, Feb 04 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2), T(1,3), T(3,1),
...
T(2,n-1), T(4,n-3), T(6,n-5), ..., T(n,1),
T(2,n), T(4,n-2), T(6,n-4), ..., T(n,2),
T(1,n), T(3,n-2), T(5,n-4), ..., T(n-1,2),
T(1,n+1), T(3,n-1), T(5,n-3), ..., T(n+1,1),
...
The order of the list elements of adjacent antidiagonals. Let m be a positive integer.
Movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(2,2*m-1) to T(2*m,1) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(2,2*m) to T(2*m,2) length of step is 2,
movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(1,2*m) to T(2*m-1,2) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(1,2*m+1) to T(2*m+1,1) length of step is 2.
Table contains:
row 1 is alternation of elements A001844 and A084849,
row 2 is alternation of elements A130883 and A058331,
row 3 is alternation of elements A051890 and A096376,
row 4 is alternation of elements A033816 and A005893,
row 6 is alternation of elements A100037 and A093328;
row 5 accommodates elements A097080 in odd places,
row 7 accommodates elements A137882 in odd places,
row 10 accommodates elements A100038 in odd places,
row 14 accommodates elements A100039 in odd places;
column 1 is A093005 and alternation of elements A000384 and A001105,
column 2 is alternation of elements A046092 and A014105,
column 3 is A105638 and alternation of elements A014106 and A056220,
column 4 is alternation of elements A142463 and A014107,
column 5 is alternation of elements A091823 and A054000,
column 6 is alternation of elements A090288 and |A168244|,
column 8 is alternation of elements A059993 and A033537;
column 7 accommodates elements A071355 in odd places,
column 9 accommodates elements |A147973| in even places,
column 10 accommodates elements A139570 in odd places,
column 13 accommodates elements A130861 in odd places.

Examples

			The start of the sequence as table:
   1,  4,  5,  11,  13,  22,  25,  37,  41,  56,  61, ...
   2,  3,  7,   9,  16,  19,  29,  33,  46,  51,  67, ...
   6, 12, 14,  23,  26,  38,  42,  57,  62,  80,  86, ...
   8, 10, 17,  20,  30,  34,  47,  52,  68,  74,  93, ...
  15, 24, 27,  39,  43,  58,  63,  81,  87, 108, 115, ...
  18, 21, 31,  35,  48,  53,  69,  75,  94, 101. 123, ...
  28, 40, 44,  59,  64,  82,  88, 109, 116, 140, 148, ...
  32, 36, 49,  54,  70,  76,  95, 102, 124, 132, 157, ...
  45, 60, 65,  83,  89, 110, 117, 141, 149, 176, 185, ...
  50, 55, 71,  77,  96, 103, 125, 133, 158, 167, 195, ...
  66, 84, 90, 111, 118, 142, 150, 177, 186, 216, 226, ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   4,  2;
   5,  3,  6;
  11,  7, 12,  8;
  13,  9, 14, 10, 15;
  22, 16, 23, 17, 24, 18;
  25, 19, 26, 20, 27, 21, 28;
  37, 29, 38, 30, 39, 31, 40, 32;
  41, 33, 42, 34, 43, 35, 44, 36, 45;
  56, 46, 57, 47, 58, 48, 59, 49, 60, 50;
  61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66;
  ...
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of  triangle array, located above.
Last  2*r-1 numbers are from the row number 2*r-1 of  triangle array, located above.
   1;
   4, 2, 5, 3, 6;
  11, 7,12, 8,13, 9,14,10,15;
  22,16,23,17,24,18,25,19,26,20,27,21,28;
  37,29,38,30,39,31,40,32,41,33,42,34,43,35,44,36,45;
  56,46,57,47,58,48,59,49,60,50,61,51,62,52,63,53,64,54,65,55,66;
  ...
Row number r contains permutation numbers 4*r-3 from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-3*r+2,2*r*r-5*r+4, 2*r*r-3*r+3, 2*r*r-5*r+5, 2*r*r-3*r+4, 2*r*r-5*r+6, ..., 2*r*r-3*r+1, 2*r*r-r.
...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=(2*j**2+(4*i-5)*j+2*i**2-3*i+2+(2+(-1)**j)*((1-(t+1)*(-1)**i)))/4

Formula

T(n,k) = (2*k^2+(4*n-5)*k+2*n^2-3*n+2+(2+(-1)^k)*((1-(k+n-1)*(-1)^i)))/4.
a(n) = (2*j^2+(4*i-5)*j+2*i^2-3*i+2+(2+(-1)^j)*((1-(t+1)*(-1)^i)))/4, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((sqrt(8*n-7) - 1)/2).

A216248 T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2-1, if k=1 and (n mod 2)=1; T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2, else. Table T(n,k) read by antidiagonals; n, k > 0.

Original entry on oeis.org

1, 2, 5, 3, 4, 6, 7, 10, 11, 14, 8, 9, 12, 13, 15, 16, 19, 20, 23, 24, 27, 17, 18, 21, 22, 25, 26, 28, 29, 32, 33, 36, 37, 40, 41, 44, 30, 31, 34, 35, 38, 39, 42, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 66, 67
Offset: 1

Views

Author

Boris Putievskiy, Mar 14 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(1,2), T(1,3), T(2,2), T(2,1), T(3,1);
. . .
T(1,2*m), T(1,2*m+1), T(2,2*m), T(2,2*m-1), T(3,2*m-2), ... T(2*m-1,2), T(2*m-1,3), T(2*m,2), T(2*m,1), T(2*m+1,1);
. . .
Movement along two adjacent antidiagonals - step to the east, step to the southwest, step to the west, step to the southwest and so on. The length of each step is 1.

Examples

			The start of the sequence as table:
1....2...3...7...8..16..17...
5....4..10...9..19..18..32...
6...11..12..20..21..33..34...
14..13..23..22..36..35..53...
15..24..25..37..38..54..55...
27..26..40..39..57..56..78...
28..41..42..58..59..79..80...
. . .
The start of the sequence as triangular array read by rows:
1;
2,5;
3,4,6;
7,10,11,14;
8,9,12,13,15;
16,19,20,23,24,27;
17,18,21,22,25,26,28;
. . .
The start of the sequence as array read by rows, the length of row number r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last  2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
1;
2,5,3,4,6;
7,10,11,14,8,9,12,13,15;
16,19,20,23,24,27,17,18,21,22,25,26,28;
. . .
Row number r contains permutation of the 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+4, 2*r*r-5*r+7, ... 2*r*r-r-2, 2*r*r-r.
		

Crossrefs

Cf. A213205, A213171, A213197, A210521; table T(n,k) contains: in rows A033816, A130883, A100037, A100038, A100039; in columns A000384, A071355, A014106, A091823, A130861.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-4*j+3-(-1)**j-(t)*(-1)**t)/2
    if j==1 and (i%2)==1:
       result=result-1

Formula

As table
T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2-1, if k=1 and (n mod 2)=1;
T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2, else.
As linear sequence
a(n)=((t+2)^2-4*j+3-(-1)^j-(t)*(-1)^t)/2 -1, if j=1 and (i mod 2)=1;
a(n)=((t+2)^2-4*j+3-(-1)^j-(t)*(-1)^t)/2, else; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A216249 T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2-2, if k=1 and (n mod 2)=1; T(n,k)=((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2, else. Table T(n,k) read by antidiagonals; n , k > 0.

Original entry on oeis.org

1, 3, 2, 4, 5, 6, 8, 7, 12, 11, 9, 10, 13, 14, 15, 17, 16, 21, 20, 25, 24, 18, 19, 22, 23, 26, 27, 28, 30, 29, 34, 33, 38, 37, 42, 41, 31, 32, 35, 36, 39, 40, 43, 44, 45, 47, 46, 51, 50, 55, 54, 59, 58, 63, 62, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 66, 68, 67, 72, 71, 76, 75, 80, 79, 84, 83, 88, 87
Offset: 1

Views

Author

Boris Putievskiy, Mar 14 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(2,1), T(1,2), T(1,3), T(2,2), T(3,1);
. . .
T(2,2*m-1), T(1,2*m), T(1,2*m+1), T(2,2*m), T(2*m-3,4), ... T(2*m,1), T(2*m-1,2), T(2*m-1,3), T(2*m,2), T(2*m+1,1);
. . .
Movement along two adjacent antidiagonals - step to the northeast, step to the east, step to the southwest, 3 steps to the west, 2 steps to the south and so on.
The length of each step is 1.

Examples

			The start of the sequence as table:
   1   3  4    8   9  17  18...
   2   5  7   10  16  19  29...
   6  12  13  21  22  34  35...
  11  14  20  23  33  36  50...
  15  25  26  38  39  55  56...
  24  27  37  40  54  57  75...
  28  42  43  59  60  80  81...
  ...
The start of the sequence as triangular array read by rows:
   1;
   3,  2;
   4,  5,  6;
   8,  7, 12, 11;
   9, 10, 13, 14, 15;
  17, 16, 21, 20, 25, 24;
  18, 19, 22, 23, 26, 27, 28;
  ...
As an array read by rows, where the length of row number r is 4*r-3:
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last  2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
  1;
  3,   2,   4,   5,   6;
  8,   7,  12,  11,   9,  10,  13,  14,  15;
  17, 16,  21,  20,  25,  24,  18,  19,  22,  23,  26,  27,  28;
  ...
Row number r contains permutation of the 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+5, 2*r*r-5*r+4, ...2*r*r-r-1, 2*r*r-r.
		

Crossrefs

Cf. A213205, A213171, A213197, A210521; table T(n,k) contains: in rows A100037, A033816, A130883, A100039, A100038; in columns A000384, A071355, A091823, A014106.

Programs

  • Mathematica
    T[n_, k_] := ((n+k)^2 - 4k + 3 - 2(-1)^n + (-1)^k - (n+k-4)(-1)^(n+k))/2 - 2Boole[k == 1 && OddQ[n]];
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 20 2019 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-4*j+3+(-1)**j-2*(-1)**i-(t-2)*(-1)**t)/2
    if j==1 and (i%2)==1:
       result=result-2

Formula

As a table:
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2-2, if k=1 and (n mod 2)=1;
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2, else.
As a linear sequence:
a(n) = ((t+2)^2-4*j+3-2*(-1)^i+(-1)^j-(t-2)*(-1)^t)/2-2, if j=1 and (i mod 2)=1;
a(n) = ((t+2)^2-4*j+3-2*(-1)^i+(-1)^j-(t-2)*(-1)^t)/2, else; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A216250 T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2-3, if k=1 and (n mod 2)=1; T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2, else. Table T(n,k) read by antidiagonals; n, k > 0.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 8, 11, 12, 10, 9, 14, 13, 15, 16, 17, 20, 21, 24, 25, 19, 18, 23, 22, 27, 26, 28, 29, 30, 33, 34, 37, 38, 41, 42, 32, 31, 36, 35, 40, 39, 44, 43, 45, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 49, 48, 53, 52, 57, 56, 61, 60, 65, 64, 66, 67
Offset: 1

Views

Author

Boris Putievskiy, Mar 14 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2), T(1,3), T(3,1);
. . .
T(1,2*m), T(2,2*m-1), T(2,2*m), T(1,2*m+1), T(3,2*m-2), ... T(2*m-1,2), T(2*m,1), T(2*m,2), T(2*m-1,3), T(2*m+1,1);
. . .
Movement along two adjacent antidiagonals - step to the southwest, step east, step to the northeast, 3 steps to the west, 2 steps to the south and so on. The length of each step is 1.

Examples

			The start of the sequence as table:
  1....2...5...7..10..16..19...
  3....4...8...9..17..18..30...
  6...11..14..20..23..33..36...
  12..13..21..22..34..35..51...
  15..24..27..37..40..54..57...
  25..26..38..39..55..56..76...
  28..41..44..58..61..79..82...
  . . .
The start of the sequence as triangular array read by rows:
  1;
  2,3;
  5,4,6;
  7,8,11,12;
  10,9,14,13,15;
  16,17,20,21,24,25;
  19,18,23,22,27,26,28;
  . . .
The start of the sequence as array read by rows, with length of row r: 4*r-3:
First 2*r-2 numbers are from the row number 2*r-2 of above triangle array.
Last  2*r-1 numbers are from the row number 2*r-1 of above triangle array.
  1;
  2,3,5,4,6;
  7,8,11,12,10,9,14,13,15;
  16,17,20,21,24,25,19,18,23,22,27,26,28;
  . . .
Row number r contains permutation of the 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r: 2*r*r-5*r+4, 2*r*r-5*r+5, ...2*r*r-r-2, 2*r*r-r.
		

Crossrefs

Cf. A213205, A213171, A213197, A210521; table T(n,k) contains: in rows A130883, A033816, A100037, A100038, A100039; in columns A000384, A014106, A071355, A091823, A130861.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-4*j+3-(-1)**j-2*(-1)**i-(t-2)*(-1)**t)/2
    if j==1 and (i%2)==1:
       result=result-3

Formula

As table
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2-3, if k=1 and (n mod 2)=1;
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2, else.
As linear sequence
a(n) = ((t+2)^2-4*j+3-2*(-1)^i-(-1)^j-(t-2)*(-1)^t)/2-3, if j=1 and (i mod 2)=1;
a(n) = ((t+2)^2-4*j+3-2*(-1)^i-(-1)^j-(t-2)*(-1)^t)/2, else; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
Previous Showing 21-30 of 35 results. Next