Original entry on oeis.org
0, 2, 6, 16, 32, 58, 94, 144, 208, 290, 390, 512, 656, 826, 1022, 1248, 1504, 1794, 2118, 2480, 2880, 3322, 3806, 4336, 4912, 5538, 6214, 6944, 7728, 8570, 9470, 10432, 11456, 12546, 13702, 14928, 16224, 17594, 19038, 20560, 22160, 23842, 25606
Offset: 0
-
[&+[(2*k+(-1)^k+1)*(n-k): k in [0..n]]: n in [0..42]]; // Bruno Berselli, Nov 16 2011
-
CoefficientList[Series[2x (1+x^2)/((1+x)(1-x)^4),{x,0,50}],x] (* or *) LinearRecurrence[ {3,-2,-2,3,-1},{0,2,6,16,32},50] (* Harvey P. Dale, Jan 22 2023 *)
A172482
a(n) = (1+n)*(9 + 11*n + 4*n^2)/3.
Original entry on oeis.org
3, 16, 47, 104, 195, 328, 511, 752, 1059, 1440, 1903, 2456, 3107, 3864, 4735, 5728, 6851, 8112, 9519, 11080, 12803, 14696, 16767, 19024, 21475, 24128, 26991, 30072, 33379, 36920, 40703, 44736, 49027, 53584, 58415, 63528, 68931, 74632, 80639, 86960, 93603
Offset: 0
A300437
Triangle T(nu,m) read by rows: The number of N-color odd self-inverse compositions of (2*nu+1) into (2*m+1) parts.
Original entry on oeis.org
1, 3, 1, 5, 3, 1, 7, 8, 3, 1, 9, 16, 11, 3, 1, 11, 29, 25, 14, 3, 1, 13, 47, 58, 34, 17, 3, 1, 15, 72, 110, 96, 43, 20, 3, 1, 17, 104, 206, 200, 143, 52, 23, 3, 1, 19, 145, 346, 442, 317, 199, 61, 26, 3, 1, 21, 195, 571, 822, 807, 461, 264, 70, 29, 3, 1, 23, 256, 881, 1565, 1613, 1328, 632, 338, 79, 32, 3, 1
Offset: 0
The triangle starts in row nu=0 with columns 0<=m<=nu as:
1;
3,1;
5,3,1;
7,8,3,1;
9,16,11,3,1;
11,29,25,14,3,1;
13,47,58,34,17,3,1;
15,72,110,96,43,20,3,1;
17,104,206,200,143,52,23,3,1;
19,145,346,442,317,199,61,26,3,1;
21,195,571,822,807,461,264,70,29,3,1;
23,256,881,1565,1613,1328,632,338,79,32,3,1;
25,328,1337,2671,3478,2800,2032,830,421,88,35,3,1;
27,413,1939,4596,6402,6742,4464,2946,1055,513,97,38,3,1;
-
A300437 := proc(k,l)
local a,t,i,j ;
a := 0 ;
for t from 1 to 2*k+1 by 2 do
for j from 0 to l do
i := (2*k+1-t-2*l)/4-j ;
if type(i,'integer') then
a := a+t*binomial(2*l+i-1,2*l-1)*binomial(l,j) ;
end if;
end do:
end do:
a ;
end proc:
seq(seq(A300437(k,l),l=0..k),k=0..13) ;
-
A300437[k_, l_] := Module[{a, t, i, j }, a = 0; For[t = 1, t <= 2k + 1, t += 2, For[j = 0, j <= l, j++, i = (2k + 1 - t - 2*l)/4 - j; If[ IntegerQ[i], a = a + t*Binomial[2l + i - 1, 2l - 1]*Binomial[l, j]]]]; a];
Table[Table[A300437[k, l], {l, 0, k}], {k, 0, 13}] // Flatten (* Jean-François Alcover, Aug 15 2023, after Maple code *)
A325517
a(n) = n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24.
Original entry on oeis.org
0, 1, 6, 24, 64, 145, 282, 504, 832, 1305, 1950, 2816, 3936, 5369, 7154, 9360, 12032, 15249, 19062, 23560, 28800, 34881, 41866, 49864, 58944, 69225, 80782, 93744, 108192, 124265, 142050, 161696, 183296, 207009, 232934, 261240, 292032, 325489, 361722, 400920, 443200
Offset: 0
-
Flat(List([0..50], n->n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24));
-
[n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24: n in [0..50]];
-
a:=n->n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24: seq(a(n), n=0..50);
-
a[n_]:=n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24; Array[a,50,0]
-
a(n) = n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24;
A179783
a(n) = 2*n*(n+1)*(n+2)/3 + (-1)^n.
Original entry on oeis.org
1, 3, 17, 39, 81, 139, 225, 335, 481, 659, 881, 1143, 1457, 1819, 2241, 2719, 3265, 3875, 4561, 5319, 6161, 7083, 8097, 9199, 10401, 11699, 13105, 14615, 16241, 17979, 19841, 21823, 23937, 26179, 28561, 31079
Offset: 0
-
[(2/3)*n*(n+1)*(n+2)+(-1)^n: n in [0..35]];
-
LinearRecurrence[{3,-2,-2,3,-1},{1,3,17,39,81},40] (* Harvey P. Dale, Mar 04 2023 *)
-
for(n=0, 35, print1((2/3)*n*(n+1)*(n+2)+(-1)^n", "));
Comments