cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A171218 a(n) = Sum_{k=0..n} A109613(k)*A005843(n-k).

Original entry on oeis.org

0, 2, 6, 16, 32, 58, 94, 144, 208, 290, 390, 512, 656, 826, 1022, 1248, 1504, 1794, 2118, 2480, 2880, 3322, 3806, 4336, 4912, 5538, 6214, 6944, 7728, 8570, 9470, 10432, 11456, 12546, 13702, 14928, 16224, 17594, 19038, 20560, 22160, 23842, 25606
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 05 2009

Keywords

Comments

a(n) is the number of triples (w,x,y) with all terms in {0,...,n} and 2|w-x|Clark Kimberling, Jun 11 2012]

Programs

  • Magma
    [&+[(2*k+(-1)^k+1)*(n-k): k in [0..n]]: n in [0..42]]; // Bruno Berselli, Nov 16 2011
  • Mathematica
    CoefficientList[Series[2x (1+x^2)/((1+x)(1-x)^4),{x,0,50}],x] (* or *) LinearRecurrence[ {3,-2,-2,3,-1},{0,2,6,16,32},50] (* Harvey P. Dale, Jan 22 2023 *)

Formula

a(n+1) - a(n) = A137928(n+1).
From Bruno Berselli, Nov 16 2011: (Start)
G.f.: 2*x*(1+x^2)/((1+x)*(1-x)^4).
a(n) = 2*A131941(n) = (2*n*(2*n^2+3*n+4)-3*(-1)^n+3)/12.
a(n) = -a(-n-1) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). (End)

A172482 a(n) = (1+n)*(9 + 11*n + 4*n^2)/3.

Original entry on oeis.org

3, 16, 47, 104, 195, 328, 511, 752, 1059, 1440, 1903, 2456, 3107, 3864, 4735, 5728, 6851, 8112, 9519, 11080, 12803, 14696, 16767, 19024, 21475, 24128, 26991, 30072, 33379, 36920, 40703, 44736, 49027, 53584, 58415, 63528, 68931, 74632, 80639, 86960, 93603
Offset: 0

Views

Author

Paul Curtz, Feb 04 2010

Keywords

Comments

One of the bisections of the left central column in the Janet table A172002.
Row 1 of the convolution array A213844. - Clark Kimberling, Jul 05 2012
With offset 2, this is 4*n^3/3 - 3*n^2 + 8*n/3 - 1, the number of divisions of a 2 X n board into 3 pieces where the rightmost squares separate. See Jacob Brown article. - Michel Marcus, Jun 29 2021

Crossrefs

Programs

Formula

a(n) = A131941(2n+2), where A100178(n) = A131941(2n-1).
a(n) = 4*a(n) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) mod 10 = 3, 6, 7, 4, 5, 8, 1, 2, 9, 0 (and repeat periodically).
G.f.: (x+3)*(1+x)/(x-1)^4.
E.g.f.: exp(x)*(9 + 39*x + 27*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 02 2025

Extensions

Edited by R. J. Mathar, Feb 24 2010

A300437 Triangle T(nu,m) read by rows: The number of N-color odd self-inverse compositions of (2*nu+1) into (2*m+1) parts.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 7, 8, 3, 1, 9, 16, 11, 3, 1, 11, 29, 25, 14, 3, 1, 13, 47, 58, 34, 17, 3, 1, 15, 72, 110, 96, 43, 20, 3, 1, 17, 104, 206, 200, 143, 52, 23, 3, 1, 19, 145, 346, 442, 317, 199, 61, 26, 3, 1, 21, 195, 571, 822, 807, 461, 264, 70, 29, 3, 1, 23, 256, 881, 1565, 1613, 1328, 632, 338, 79, 32, 3, 1
Offset: 0

Views

Author

R. J. Mathar, Mar 05 2018

Keywords

Comments

Table 1 of Guo contains several typos which are not compliant with the formula on page 4 for S_o(2k+1,2l+1). Also the formula has been modified to read S_o(2k+1,2l+1) = sum_{t=1..2k+1) sum_{i+j= (2k+1-t-2l)/4} t*binomial(2l+i-1,2l-1)*binomial(l,j). So the upper limit on t has been extended and a factor t has been inserted.

Examples

			The triangle starts in row nu=0 with columns 0<=m<=nu as:
1;
3,1;
5,3,1;
7,8,3,1;
9,16,11,3,1;
11,29,25,14,3,1;
13,47,58,34,17,3,1;
15,72,110,96,43,20,3,1;
17,104,206,200,143,52,23,3,1;
19,145,346,442,317,199,61,26,3,1;
21,195,571,822,807,461,264,70,29,3,1;
23,256,881,1565,1613,1328,632,338,79,32,3,1;
25,328,1337,2671,3478,2800,2032,830,421,88,35,3,1;
27,413,1939,4596,6402,6742,4464,2946,1055,513,97,38,3,1;
		

Crossrefs

Cf. A131941 (column 2?), A300438 (row sums), A292835.

Programs

  • Maple
    A300437 := proc(k,l)
        local a,t,i,j ;
        a := 0 ;
        for t from 1 to 2*k+1 by 2 do
            for j from 0 to l do
                i := (2*k+1-t-2*l)/4-j ;
                if type(i,'integer') then
                    a := a+t*binomial(2*l+i-1,2*l-1)*binomial(l,j) ;
                end if;
            end do:
        end do:
        a ;
    end proc:
    seq(seq(A300437(k,l),l=0..k),k=0..13) ;
  • Mathematica
    A300437[k_, l_] := Module[{a, t, i, j }, a = 0; For[t = 1, t <= 2k + 1, t += 2, For[j = 0, j <= l, j++, i = (2k + 1 - t - 2*l)/4 - j; If[ IntegerQ[i], a = a + t*Binomial[2l + i - 1, 2l - 1]*Binomial[l, j]]]]; a];
    Table[Table[A300437[k, l], {l, 0, k}], {k, 0, 13}] // Flatten (* Jean-François Alcover, Aug 15 2023, after Maple code *)

Formula

64*T(nu+2,2) = 51 +1306/15*nu +13*(-1)^nu +56/3*nu^3 +170/3*nu^2 +4/15*nu^5 +10*(-1)^nu*nu +2*(-1)^nu*nu^2 +10/3*nu^4 with g.f. (1+x^2)^2/[(1+x)^3*(1-x)^6], column 2.

A325517 a(n) = n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24.

Original entry on oeis.org

0, 1, 6, 24, 64, 145, 282, 504, 832, 1305, 1950, 2816, 3936, 5369, 7154, 9360, 12032, 15249, 19062, 23560, 28800, 34881, 41866, 49864, 58944, 69225, 80782, 93744, 108192, 124265, 142050, 161696, 183296, 207009, 232934, 261240, 292032, 325489, 361722, 400920, 443200
Offset: 0

Views

Author

Stefano Spezia, May 07 2019

Keywords

Comments

For n > 0, a(n) is the n-th row sum of the triangle A325516.

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n->n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24));
    
  • Magma
    [n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24: n in [0..50]];
    
  • Maple
    a:=n->n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24: seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24; Array[a,50,0]
  • PARI
    a(n) = n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24;

Formula

O.g.f.: x*(1 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/((1 - x)^5*(1 + x)^2).
E.g.f.: (1/24)*exp(-x)*x*(3 + 21*exp(2*x) + 54*exp(2*x)*x + 30*exp(2*x)*x^2 + 4*exp(2*x)*x^3).
a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = n^2*(2*n^2 + 3*n + 4)/12 if n is even.
a(n) = n*(n + 1)*(2*n^2 + n + 3)/12 if n is odd.
a(n) = n*A131941(n). - Stefano Spezia, Dec 21 2021

A179783 a(n) = 2*n*(n+1)*(n+2)/3 + (-1)^n.

Original entry on oeis.org

1, 3, 17, 39, 81, 139, 225, 335, 481, 659, 881, 1143, 1457, 1819, 2241, 2719, 3265, 3875, 4561, 5319, 6161, 7083, 8097, 9199, 10401, 11699, 13105, 14615, 16241, 17979, 19841, 21823, 23937, 26179, 28561, 31079
Offset: 0

Views

Author

Bruno Berselli, Jul 29 2010 - Sep 07 2010

Keywords

Comments

First differences in 2*A081352.
Second differences in 4*A004442.

Crossrefs

Programs

  • Magma
    [(2/3)*n*(n+1)*(n+2)+(-1)^n: n in [0..35]];
    
  • Mathematica
    LinearRecurrence[{3,-2,-2,3,-1},{1,3,17,39,81},40] (* Harvey P. Dale, Mar 04 2023 *)
  • PARI
    for(n=0, 35, print1((2/3)*n*(n+1)*(n+2)+(-1)^n", "));

Formula

G.f.: (1+10*x^2-4*x^3+x^4)/((1+x)*(1-x)^4); exp(-x)+(2/3)*exp(x)*x*(6+6*x+x^2).
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4.
a(n) = 4*A000292(n)+(-1)^n.
Previous Showing 11-15 of 15 results.