A140882
Triangle by rows with row n formed by coefficients of the characteristic polynomial of the n X n tridiagonal matrix with m_{i,i} = 2 for i=1..n, m_{i,i-1} = m_{i,i+1} = -1 for i=2..n-1, and m_{1,2} = m_{n,n-1} = -2.
Original entry on oeis.org
1, 2, -1, 0, -4, 1, 0, -8, 6, -1, 0, -12, 19, -8, 1, 0, -16, 44, -34, 10, -1, 0, -20, 85, -104, 53, -12, 1, 0, -24, 146, -259, 200, -76, 14, -1, 0, -28, 231, -560, 606, -340, 103, -16, 1, 0, -32, 344, -1092, 1572, -1210, 532, -134, 18, -1, 0, -36, 489, -1968, 3630, -3652, 2171, -784, 169, -20, 1
Offset: 0
1;
2, -1;
0, -4, 1;
0, -8, 6, -1;
0, -12, 19, -8, 1;
0, -16, 44, -34, 10, -1;
0, -20, 85, -104, 53, -12, 1;
0, -24, 146, -259, 200, -76, 14, -1;
0, -28, 231, -560, 606, -340, 103, -16, 1;
0, -32, 344, -1092, 1572, -1210, 532, -134, 18, -1;
0, -36, 489, -1968, 3630, -3652, 2171, -784, 169, -20, 1;
...
- Kemeny, Snell and Thompson, Introduction to Finite Mathematics, 1966, Prentice-Hall, New Jersey, Section 3, Chapter VII, page 407.
-
# Assume T(1, 0) = 0 instead of 2.
# Then a slightly modified form of Copeland's second comment gives
# T(n, k) = [t^k] [x^n] gf where
gf := ((t - 4)*t*x^2) / ((t - 2)*x + x^2 + 1) - t*x + 1:
ser := series(gf, x, 12): cx := n -> coeff(ser, x, n):
for n from 0 to 10 do lprint(seq(coeff(cx(n), t, k), k = 0..n)) od;
# Peter Luschny, Apr 27 2024
-
T[n_, m_, d_] := If[ n == m, 2, If[(n == d && m == d - 1) || ( n == 1 && m == 2), -2, If[(n == m - 1 || n == m + 1), -1, 0]]];
M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}];
a = Join[{{1}}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d, 1, 10}]];
Flatten[a]
Edited by the editors of the OEIS, Apr 27 2024
A317506
Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-4,k-1) for 0 <= k <= floor(n/4); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 2, 4, 8, 16, -1, 32, -4, 64, -12, 128, -32, 256, -80, 1, 512, -192, 6, 1024, -448, 24, 2048, -1024, 80, 4096, -2304, 240, -1, 8192, -5120, 672, -8, 16384, -11264, 1792, -40, 32768, -24576, 4608, -160, 65536, -53248, 11520, -560, 1, 131072, -114688, 28160, -1792, 10
Offset: 0
Triangle begins:
1;
2;
4;
8;
16, -1;
32, -4;
64, -12;
128, -32;
256, -80, 1;
512, -192, 6;
1024, -448, 24;
2048, -1024, 80;
4096, -2304, 240, -1;
8192, -5120, 672, -8;
16384, -11264, 1792, -40;
32768, -24576, 4608, -160;
65536, -53248, 11520, -560, 1;
131072, -114688, 28160, -1792, 10;
262144, -245760, 67584, -5376, 60;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
-
t[n_, k_] := t[n, k] = 2^(n - 4 k) * (-1)^k/((n - 4 k)! k!) * (n - 3 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]}] // Flatten
A185342
Triangle of successive recurrences in columns of A117317(n).
Original entry on oeis.org
2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0
Triangle T(n,k),for 1<=k<=n, begins :
2 (1)
4 -4 (2)
6 -12 8 (3)
8 -24 32 -16 (4)
10 -40 80 -80 32 (5)
12 -60 160 -240 192 -64 (6)
14 -84 280 -560 672 -448 128 (7)
16 -112 448 -1120 1792 -1792 1024 -256 (8)
Successive rows can be divided by A171977.
-
Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
-
for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017
A228637
The number triangle associated with the polynomials V_n(x).
Original entry on oeis.org
1, -1, 1, -1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 5, 1, -1, 1, 41, 29, 7, 1, -1, 1, 153, 169, 55, 9, 1, 1, 1, 571, 985, 433, 89, 11, 1, 1, 1, 2131, 5741, 3409, 881, 131, 13, 1, -1, 1, 7953, 33461, 26839, 8721, 1561, 181, 15, 1
Offset: 0
V_0(x)=1, V_1(x)=2x-1, V_2(x)=4x^2-2x-1, ...
A317504
Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 2, 4, 8, -1, 16, -4, 32, -12, 64, -32, 1, 128, -80, 6, 256, -192, 24, 512, -448, 80, -1, 1024, -1024, 240, -8, 2048, -2304, 672, -40, 4096, -5120, 1792, -160, 1, 8192, -11264, 4608, -560, 10, 16384, -24576, 11520, -1792, 60, 32768, -53248, 28160, -5376, 280, -1, 65536, -114688, 67584, -15360, 1120, -12
Offset: 0
Triangle begins:
1;
2;
4;
8, -1;
16, -4;
32, -12;
64, -32, 1;
128, -80, 6;
256, -192, 24;
512, -448, 80, -1;
1024, -1024, 240, -8;
2048, -2304, 672, -40;
4096, -5120, 1792, -160, 1;
8192, -11264, 4608, -560, 10;
16384, -24576, 11520, -1792, 60;
32768, -53248, 28160, -5376, 280, -1;
65536, -114688, 67584, -15360, 1120, -12;
131072, -245760, 159744, -42240, 4032, -84;
262144, -524288, 372736, -112640, 13440, -448, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393.
-
t[n_, k_] := t[n, k] = 2^(n - 3k) * (-1)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]}] // Flatten
A317505
Triangle read by rows: T(0,0) = 1; T(n,k) = - T(n-1,k) - 2 T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -1, 1, -1, 2, 1, -4, -1, 6, 1, -8, 4, -1, 10, -12, 1, -12, 24, -1, 14, -40, 8, 1, -16, 60, -32, -1, 18, -84, 80, 1, -20, 112, -160, 16, -1, 22, -144, 280, -80, 1, -24, 180, -448, 240, -1, 26, -220, 672, -560, 32, 1, -28, 264, -960, 1120, -192, -1, 30, -312, 1320, -2016, 672, 1, -32, 364, -1760, 3360, -1792, 64, -1, 34, -420, 2288, -5280, 4032, -448
Offset: 0
Triangle begins:
1;
-1;
1;
-1, 2;
1, -4;
-1, 6;
1, -8, 4;
-1, 10, -12;
1, -12, 24;
-1, 14, -40, 8;
1, -16, 60, -32;
-1, 18, -84, 80;
1, -20, 112, -160, 16;
-1, 22, -144, 280, -80;
1, -24, 180, -448, 240;
-1, 26, -220, 672, -560, 32;
1, -28, 264, -960, 1120, -192;
-1, 30, -312, 1320, -2016, 672;
1, -32, 364, -1760, 3360, -1792, 64;
-1, 34, -420, 2288, -5280, 4032, -448;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393.
-
t[n_, k_] := t[n, k] = (-1)^(n - 3k) * 2^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, - t[n - 1, k] + 2 t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]}] // Flatten
A228356
The triangle associated with the family of polynomials W_n(x).
Original entry on oeis.org
1, 1, 1, -1, 3, 1, -1, 5, 5, 1, 1, 7, 19, 7, 1, 1, 9, 71, 41, 9, 1, -1, 11, 265, 239, 71, 11, 1, -1, 13, 989, 1393, 559, 109, 13, 1, 1, 15, 3691, 8119, 4401, 1079, 155, 15, 1, 1, 17, 13775, 47321, 34649, 10681, 1847, 209, 17, 1
Offset: 0
The triangle is given here as W_0(0)=1, W_1(0)=1, W_0(1)=1, W_2(0)=-1, W_1(1)=3, W_0(2)=1, W_3(0)=-1, W_2(1)=5 ...
-
W[0, ] = 1; W[1, x] := 2 x + 1; W[n_, x_] := W[n, x] = 2 x W[n - 1, x] - W[n - 2, x]; Table[W[n - x, x] , {n, 0, 9}, {x, 0, n}] // Flatten (* Jean-François Alcover, Jun 11 2017 *)
Comments