cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A133539 Sum of third powers of five consecutive primes.

Original entry on oeis.org

1834, 4023, 8909, 15643, 27467, 50525, 78119, 123859, 185921, 253261, 332695, 451781, 606507, 764567, 985823, 1239911, 1480051, 1767711, 2112517, 2516723, 3071485, 3712769, 4312457, 4965713, 5555773, 6085997, 7104079, 8259443
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1834 because 2^3+3^3+5^3+7^3+11^3=1834.
		

Crossrefs

Programs

  • Mathematica
    a = 3; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total[#^3]&/@Partition[Prime[Range[40]],5,1] (* Harvey P. Dale, May 01 2013 *)

Formula

a(n) = A133525(n) + A030078(n+4). - Michel Marcus, Nov 09 2013

A133543 Sum of seventh powers of five consecutive primes.

Original entry on oeis.org

20391154, 83139543, 493476029, 1387269643, 4791271547, 22021660685, 49471526279, 143993064739, 337853466881, 606267252541, 1095640496695, 2242839022421, 4636558630107, 7584547192247, 13373440186463
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=20391154 because 2^7+3^7+5^7+7^7+11^7=20391154
		

Crossrefs

Programs

  • Mathematica
    a = 7; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[20]]^7,5,1] (* Harvey P. Dale, Mar 05 2022 *)

A133541 Sum of fifth powers of five consecutive primes.

Original entry on oeis.org

181258, 552519, 1972133, 4445107, 10864643, 31214741, 59472599, 127396699, 240776801, 381348901, 590182759, 979749101, 1625329443, 2354069543, 3557186207, 5132070551, 6786946651, 9149078751, 12243523093, 16477457435
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=181258 because 2^5+3^5+5^5+7^5+11^5=181258.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[30]]^5,5,1] (* Harvey P. Dale, Dec 02 2017 *)

Formula

a(n) = A133527(n) + A050997(n+4). - Michel Marcus, Nov 09 2013

A133542 Sum of sixth powers of five consecutive primes.

Original entry on oeis.org

1905628, 6732373, 30869213, 77899469, 225817709, 818869469, 1701546341, 4243135181, 8946193541, 15119520701, 25303912709, 46580770157, 86195577389, 132965847509, 217102866629, 334423935221, 463593800381, 664500722261
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1905628 because 2^6+3^6+5^6+7^6+11^6=1905628.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[30]],5,1]^6)  (* Harvey P. Dale, Mar 13 2011 *)

Formula

a(n) = A133528(n) + A030516(n+4). - Michel Marcus, Nov 09 2013

A164129 Primes that are the sums of cubes of three consecutive primes.

Original entry on oeis.org

66347, 199081, 332207, 581237, 733123, 1047691, 2647943, 3612799, 7505063, 10620793, 22715029, 32180581, 36355409, 60621553, 76753387, 98784001, 116319367, 147594259, 162516943, 177616529, 216596449, 252725563, 343774313
Offset: 1

Views

Author

Keywords

Examples

			23^3+29^3+31^3=66347, 37^3+41^3+43^3=199081, 43^3+47^3+53^3=332207,..
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n]^3+Prime[n+1]^3+Prime[n+2]^3;If[PrimeQ[p],AppendTo[lst,p]],{n,6!}];lst
    Select[Total[#^3]&/@Partition[Prime[Range[100]],3,1],PrimeQ] (* Harvey P. Dale, Nov 04 2015 *)

Extensions

Edited by Charles R Greathouse IV, Oct 12 2009

A259772 Primes p such that p^3 + q^2 + r is also prime, where p,q,r are consecutive primes.

Original entry on oeis.org

3, 17, 19, 43, 53, 89, 107, 149, 293, 401, 439, 449, 659, 809, 821, 937, 1009, 1031, 1091, 1097, 1123, 1163, 1181, 1259, 1277, 1367, 1427, 1657, 1721, 1777, 1789, 1811, 1987, 2027, 2063, 2207, 2333, 2417, 2503, 2657, 2713, 3067, 3079, 3083, 3251, 3389, 3491, 3527
Offset: 1

Views

Author

K. D. Bajpai, Jul 05 2015

Keywords

Examples

			a(2) = 17 is prime: 17^3 + 19^2 + 23 = 5297 which is also prime.
a(3) = 19 is prime: 19^3 + 23^2 + 29 = 7417 which is also prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (3000) | IsPrime(k) where k is (p^3 + NextPrime(p)^2 + NextPrime(NextPrime(p)))];
  • Maple
    select(n -> isprime(n) and isprime((n)^3+nextprime(n)^2+nextprime(nextprime((n)))), [seq(n, n=1..10000)]);
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[#^3 + NextPrime[#]^2 + NextPrime[NextPrime[#]]]&]
    Select[Partition[Prime[Range[500]],3,1],PrimeQ[#[[1]]^3+ #[[2]]^2+ #[[3]]]&][[All,1]] (* Harvey P. Dale, Dec 23 2021 *)
  • PARI
    forprime(p=1, 3000, q=nextprime(p+1); r=nextprime(q+1); k=(p^3 + q^2 + r); if(isprime(k), print1(p,", ")))
    

A131686 Sum of squares of five consecutive primes.

Original entry on oeis.org

208, 373, 653, 989, 1469, 2189, 2981, 4061, 5381, 6701, 8069, 9917, 12029, 14069, 16709, 19541, 22061, 24821, 27989, 31421, 35789, 40661, 45029, 49589, 53549, 56909, 62837, 69389, 76709, 84149, 93581, 100253, 107741, 115541, 124109, 131837
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=208 because 2^2+3^2+5^2+7^2+11^2=208
		

Crossrefs

Programs

  • Mathematica
    a = 2; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]

A258269 Primes of the form p^3 + q^2 + r, where p, q, r are consecutive primes.

Original entry on oeis.org

59, 5297, 7417, 81769, 152419, 714479, 1237037, 3330907, 25248317, 64648901, 84801217, 90728159, 286628773, 530133671, 554065817, 823543381, 1028270917, 1096980919, 1299792317, 1321357391, 1417523659, 1574410169, 1648622903, 1997248987, 2084078057, 2556384373
Offset: 1

Views

Author

K. D. Bajpai, May 25 2015

Keywords

Examples

			a(1) = 59 is prime of the form 3^3 + 5^2 + 7.
a(2) = 5297 is prime of the form 17^3 + 19^2 + 23.
		

Crossrefs

Programs

  • Magma
    [k: p in PrimesUpTo (3000) | IsPrime(k) where k is (p^3 + NextPrime(p)^2 + NextPrime(NextPrime(p)))];
    
  • Maple
    A258269:= n-> (ithprime(n)^3+ithprime(n+1)^2+ithprime(n+2)): select(isprime, [seq((A258269(n), n=1..5000))]);
  • Mathematica
    Select[Table[p = Prime[n]; q = NextPrime[p]; r = NextPrime[q]; p^3 + q^2 + r, {n, 5000}], PrimeQ]
  • PARI
    forprime(p=1, 5000, q=nextprime(p+1); r=nextprime(q+1);  k=(p^3 + q^2 + r); if(isprime(k), print1(k,", ")))

A164130 Sums s of squares of three consecutive primes, such that s-+2 are primes.

Original entry on oeis.org

195, 5739, 18459, 32259, 33939, 60291, 74019, 169491, 187131, 244899, 276819, 388179, 783531, 902139, 3588339, 5041491, 5145819, 5193051, 8687091, 9637491, 10227291, 10910019, 11341491, 11757339, 14834379, 15354651, 16115091
Offset: 1

Views

Author

Keywords

Examples

			5^2 + 7^2 + 11^2 = 195 is a sum of the squared consecutive primes 5, 7 and 11, and 193 and 197 are primes, so 195 is a member of the sequence.
		

Crossrefs

Programs

  • Maple
    q:= 2: r:= 3: R:= NULL: count:= 0:
    while count < 100 do
      p:= q; q:= r; r:= nextprime(r);
      s:= p^2+q^2+r^2;
      if isprime(s-2) and isprime(s+2) then
        count:= count+1; R:= R,s;
      fi;
    od:
    R; # Robert Israel, Apr 21 2023
  • Mathematica
    lst={};Do[p=Prime[n]^2+Prime[n+1]^2+Prime[n+2]^2;If[PrimeQ[p-2]&&PrimeQ[p+2], AppendTo[lst,p]],{n,8!}];lst

Formula

A133529 INTERSECT A087679. - R. J. Mathar, Aug 27 2009

Extensions

Comment turned into example by R. J. Mathar, Aug 27 2009

A176613 Smallest prime p of three consecutive primes such that the sum of their n-th powers is prime, or 0 if such a prime does not exist.

Original entry on oeis.org

2, 5, 3, 23, 0, 11, 0, 5, 0, 23, 3, 137, 0, 5, 3, 89, 0, 71, 0, 17, 0, 23, 0, 23, 3, 131, 3, 419, 0, 31, 0, 859, 0, 31, 0, 127, 0, 11, 0, 359, 0, 31, 0, 347, 0, 509, 0, 137, 0, 193, 0, 769, 0, 23, 0, 17
Offset: 0

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 21 2010

Keywords

Comments

Let p = prime(i), q = prime(i+1), r = prime(i+2).
(*) p^n + q^n + r^n has to be a prime.
When n is even and p > 3, then (*) is composite because primes greater than 3 are either of form 6k-1 or 6k+1 for some k. Hence, squares (or any even power) of such a prime has the form 6k+1. Adding three such even powers will produce a number of the form 6k+3, which is divisible by 3.
When n is even and p = 3, sequence A160773 gives the even n for which 3^n + 5^n + 7^n is prime.

Examples

			5 + 7 + 11 = 23 = prime(9); 3^2 + 5^2 + 7^2 = 83 = prime(23); 23^3 + 29^3 + 31^3 = 66347 = prime(6616).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,q,r;
      if n::even then
        if isprime(3^n+5^n+7^n) then return 3
        else return 0
        fi
      fi;
      p:= 2: q:= 3: r:= 5:
      while not isprime(p^n + q^n + r^n) do
        p:= q; q:= r; r:= nextprime(r)
      od;
      p
    end proc:
    f(0):= 2:
    map(f, [$0..100]);

Extensions

a(0) term added by T. D. Noe, Nov 23 2010
Previous Showing 11-20 of 20 results.