cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 287 results. Next

A138135 Number of parts > 1 in the last section of the set of partitions of n.

Original entry on oeis.org

0, 1, 1, 3, 3, 8, 8, 17, 20, 34, 41, 68, 80, 123, 153, 219, 271, 382, 469, 642, 795, 1055, 1305, 1713, 2102, 2713, 3336, 4241, 5190, 6545, 7968, 9950, 12090, 14953, 18104, 22255, 26821, 32752, 39371, 47774, 57220, 69104
Offset: 1

Views

Author

Omar E. Pol, Mar 30 2008

Keywords

Comments

Also first differences of A096541. For more information see A135010.

Crossrefs

Zero together with the column k=2 of A207031.

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+`if`(i>1, g[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]-b(n-1, n-1)[2]:
    seq (a(n), n=1..60); # Alois P. Heinz, Apr 04 2012
  • Mathematica
    a[n_] := DivisorSigma[0, n] - 1 + Sum[(DivisorSigma[0, k] - 1)*(PartitionsP[n - k] - PartitionsP[n - k - 1]), {k, 1, n - 1}]; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 14 2013, from 1st formula *)
    Table[Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 42}]  (* Robert Price, May 01 2020 *)
  • PARI
    a(n)=numdiv(n)-1+sum(k=1,n-1,(numdiv(k)-1)*(numbpart(n-k) - numbpart(n-k-1))) \\ Charles R Greathouse IV, Jan 14 2013

Formula

a(n) = A096541(n)-A096541(n-1) = A138137(n)-A000041(n-1) = A006128(n)-A006128(n-1)-A000041(n-1).
a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma - 2 + log(6*n/Pi^2))/(8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 24 2016
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k) / Product_{j>=2} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021

A182712 Number of 2's in the last section of the set of partitions of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 3, 8, 7, 15, 15, 27, 29, 48, 53, 82, 94, 137, 160, 225, 265, 362, 430, 572, 683, 892, 1066, 1370, 1640, 2078, 2487, 3117, 3725, 4624, 5519, 6791, 8092, 9885, 11752, 14263, 16922, 20416, 24167, 29007, 34254, 40921, 48213, 57345, 67409
Offset: 0

Views

Author

Omar E. Pol, Nov 28 2010

Keywords

Comments

Essentially the same as A087787 but here a(n) is the number of 2's in the last section of n, not n-2. See also A100818.
Note that a(1)..a(11) coincide with a(2)..a(12) of A005291.
Also number of 2's in all partitions of n that do not contain 1's as a part, if n >= 1. Also 0 together with the first differences of A024786. - Omar E. Pol, Nov 13 2011
Also number of 2's in the n-th section of the set of partitions of any integer >= n. For the definition of "section" see A135010. - Omar E. Pol, Dec 01 2013

Examples

			a(6) = 4 counts the 2's in 6 = 4+2 = 2+2+2. The 2's in 6 = 3+2+1 = 2+2+1+1 = 2+1+1+1+1 do not count. - _Omar E. Pol_, Nov 13 2011
From _Omar E. Pol_, Oct 27 2012: (Start)
----------------------------------
Last section               Number
of the set of                of
partitions of 6             2's
----------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 1
2 + 2 + 2 .................. 3
.   1 ...................... 0
.       1 .................. 0
.       1 .................. 0
.           1 .............. 0
.           1 .............. 0
.               1 .......... 0
.                   1 ...... 0
---------------------------------
.   8 - 4 =                  4
.
In the last section of the set of partitions of 6 the difference between the sum of the second column and the sum of the third column is 8 - 4 = 4, the same as the number of 2's, so a(6) = 4 (see also A024786).
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 2], {n, 0, 49}] (* Robert Price, May 15 2020 *)
  • Sage
    A182712 = lambda n: sum(list(p).count(2) for p in Partitions(n) if 1 not in p) # Omar E. Pol, Nov 13 2011

Formula

It appears that A000041(n) = a(n+1) + a(n+2), n >= 0. - Omar E. Pol, Feb 04 2012
G.f.: (x^2/(1 + x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Jun 02 2018

A182742 Table of partitions that do not contain 1 as a part for even integers.

Original entry on oeis.org

2, 4, 2, 3, 2, 2, 6, 3, 2, 2, 5, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 8, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 7, 3, 2, 2, 2, 2, 2, 2, 2, 6, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 3, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2010, Dec 01 2010, Dec 04 2010

Keywords

Comments

This array read by antidiagonals is the main table of the shell model of partitions for even integers. Here the last sections of all even numbers are superimposed as shells of an onion. In this way many bits of information are saved.
The table is the head of the last section of partitions of an even integer when it tends to be infinite. Row n lists the parts of the n-th partition that do not contains 1 as a part.
The shell model of partitions uses this table during the filling mechanism of the head of the last section of the next even integer k. For example, in a mechanical version, the head of the last section (as a mirror) pivoting from vertical to horizontal position. Then a copy of the partitions of the integer k, listed in this table, is transmitted (or reflected) at the head (or mirror) of the last section. Finally the head (or mirror) pivots back to return to its original vertical position. And so on for all even integers.
In another version, simply a copy of the partitions of the integer k, listed in the table, are placed above the partitions of the last odd number placed in the vertical plane structure.
It appears this table is useful to know the structure of the partitions of all even integers. The same applies for odd numbers in the table of A182743. Furthermore, both tables can be unified in a three-dimensional shell model.

Examples

			Array begins:
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 2, 2, 2, 2, 2, 2, 2, 2,
6, 2, 2, 2, 2, 2, 2, 2, 2,
5, 3, 2, 2, 2, 2, 2, 2,
4, 4, 2, 2, 2, 2, 2,
8, 2, 2, 2, 2, 2,
4, 3, 3, 2, 2,
7, 3, 2, 2,
6, 4, 2,
5, 5,
10,
		

Crossrefs

Column 1 give A182732. Column 2 give A182744.

A182743 Table of the partitions that do not contain 1 as a part for odd integers.

Original entry on oeis.org

3, 5, 2, 4, 2, 2, 7, 3, 2, 2, 3, 2, 2, 2, 2, 6, 3, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 9, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2010, Dec 01 2010

Keywords

Comments

The same idea as A182742 but for odd integers.

Examples

			Array begins:
3,2,2,2,2,2,2,2,2,2,2,
5,2,2,2,2,2,2,2,2,2,
4,3,2,2,2,2,2,2,2,2,
7,2,2,2,2,2,2,2,2,
3,3,3,2,2,2,2,2,2,2,
6,3,2,2,2,2,2,2,2,
5,4,2,2,2,2,2,2,2,
9,2,2,2,2,2,2,2,
5,3,3,2,2,2,2,2,2,
4,4,3,2,2,2,2,2,2,
8,3,2,2,2,2,2,2,
7,4,2,2,2,2,2,2,
6,5,2,2,2,2,2,2,
11,2,2,2,2,2,2,
4,3,3,3,2,2,2,2,2,
7,3,3,2,2,2,2,2,
6,4,3,2,2,2,2,2,
5,5,3,2,2,2,2,2,
10,3,2,2,2,2,2,
5,4,4,2,2,2,2,2,
9,4,2,2,2,2,2,
8,5,2,2,2,2,2,
7,6,2,2,2,2,2,
		

Crossrefs

Column 1 give A182733. Column 2 give A182745.

Programs

  • Maple
    cmpL := proc(a,b) local i ; for i from 1 to min(nops(a),nops(b)) do if op(i,a) < op(i,b) then return -1 ; elif op(i,a) > op(i,b) then return 1 ; end if; end do; if nops(a) > nops(b) then return 1; elif nops(a) < nops(b) then return -1; else return 0; end if; end proc:
    pShellMin := proc(p) local idx,j; idx := 1 ; for j from 2 to nops(p) do if cmpL( op(j,p),op(idx,p)) < 0 then idx := j; end if; end do; return idx ; end proc:
    A141285rowf := proc(n) local p; if n <= 1 then [n] ; else psort := [] ; p := combinat[partition](n) ; while nops(p) > 0 do m := pShellMin(p) ; mmi := min(op(op(m,p))) ; if mmi > 1 then mma := max(op(op(m,p))) ; psort := [op(psort),sort(op(m,p),`>`)] ; end if; p := subsop(m=NULL,p) ; end do: psort ; end if; end proc:
    for n from 1 to 17 by 2 do shl := A141285rowf(n) ; for r in shl do for k in r do printf("%d,",k) ; end do: printf("\n") ; end do: printf("\n") ; end do: # R. J. Mathar, Dec 03 2010

A194812 Square array read by antidiagonals: T(n,k) = number of parts of size k in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 0, 0, 0, 5, 2, 1, 0, 0, 7, 1, 0, 0, 0, 0, 11, 4, 1, 1, 0, 0, 0, 15, 3, 2, 0, 0, 0, 0, 0, 22, 8, 2, 1, 1, 0, 0, 0, 0, 30, 7, 3, 1, 0, 0, 0, 0, 0, 0, 42, 15, 6, 3, 1, 1, 0, 0, 0, 0, 0, 56, 15, 6, 2, 1, 0, 0, 0, 0, 0, 0, 0, 77, 27, 10
Offset: 1

Views

Author

Omar E. Pol, Feb 04 2012

Keywords

Comments

It appears that in the column k, starting in row n, the sum of k successive terms is equal to A000041(n-1).

Examples

			Array begins:
.  1,  0,  0,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
.  1,  1,  0,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
.  2,  0,  1,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
.  3,  2,  0,  1, 0, 0, 0, 0, 0, 0, 0, 0,...
.  5,  1,  1,  0, 1, 0, 0, 0, 0, 0, 0, 0,...
.  7,  4,  2,  1, 0, 1, 0, 0, 0, 0, 0, 0,...
. 11,  3,  2,  1, 1, 0, 1, 0, 0, 0, 0, 0,...
. 15,  8,  3,  3, 1, 1, 0, 1, 0, 0, 0, 0,...
. 22,  7,  6,  2, 2, 1, 1, 0, 1, 0, 0, 0,...
. 30, 15,  6,  5, 3, 2, 1, 1, 0, 1, 0, 0,...
. 42, 15, 10,  5, 4, 2, 2, 1, 1, 0, 1, 0,...
. 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1,...
...
For n = 7, from the conjecture we have that p(n-1) = p(6) = 11 = 3+8 = 2+3+6 = 1+3+2+5 = 1+1+2+3+4 = 0+1+1+2+2+5, etc. where p(n) = A000041(n).
		

Crossrefs

Columns 1-4: A000041, A182712, A182713, A182714. Main triangle: A182703.

Formula

It appears that A000041(n) = Sum_{j=1..k} T(n+j,k), n >= 0, k >= 1.

A139582 Twice partition numbers.

Original entry on oeis.org

2, 2, 4, 6, 10, 14, 22, 30, 44, 60, 84, 112, 154, 202, 270, 352, 462, 594, 770, 980, 1254, 1584, 2004, 2510, 3150, 3916, 4872, 6020, 7436, 9130, 11208, 13684, 16698, 20286, 24620, 29766, 35954, 43274, 52030, 62370, 74676, 89166, 106348, 126522, 150350, 178268, 211116, 249508, 294546, 347050, 408452
Offset: 0

Views

Author

Omar E. Pol, May 14 2008

Keywords

Comments

Except for the first term the number of segments needed to draw (on the infinite square grid) a minimalist diagram of regions and partitions of n. Therefore A000041(n) is also the number of pairs of orthogonal segments (L-shaped) in the same diagram (See links section). For the definition of "regions of n" see A206437. - Omar E. Pol, Oct 29 2012

Examples

			The number of partitions of 6 is 11, then a(6) = 2*11 = 22.
		

Crossrefs

Programs

Formula

a(n) = 2*A000041(n).

Extensions

More terms from Omar E. Pol, Feb 11 2018

A144300 Number of partitions of n minus number of divisors of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 7, 13, 18, 27, 38, 54, 71, 99, 131, 172, 226, 295, 379, 488, 621, 788, 998, 1253, 1567, 1955, 2432, 3006, 3712, 4563, 5596, 6840, 8343, 10139, 12306, 14879, 17968, 21635, 26011, 31181, 37330, 44581, 53166, 63259, 75169, 89128, 105554, 124752
Offset: 1

Views

Author

Omar E. Pol, Sep 17 2008

Keywords

Comments

a(n) is also the number of partitions of n with at least one distinct part (i.e., not all parts are equal).

Crossrefs

A182114(n,n-1) = a(n). - Alois P. Heinz, Nov 02 2012

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d, d=divisors(j)) *b(n-j), j=1..n)/n) end: a:= n-> b(n)- tau(n):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 07 2008
  • Mathematica
    Table[PartitionsP[n]-DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Apr 10 2014 *)
  • PARI
    al(n)=vector(n,k,numbpart(k)-numdiv(k))
    
  • Python
    from sympy import npartitions, divisor_count
    def A144300(n): return npartitions(n)-divisor_count(n) # Chai Wah Wu, Oct 16 2023

Formula

a(n) = p(n) - d(n) = A000041(n) - A000005(n).

A182709 Sum of the emergent parts of the partitions of n.

Original entry on oeis.org

0, 0, 0, 2, 3, 11, 14, 33, 45, 81, 109, 185, 237, 372, 490, 715, 928, 1326, 1693, 2348, 2998, 4032, 5119, 6795, 8530, 11132, 13952, 17927, 22314, 28417, 35126, 44279, 54532, 68062, 83422, 103427, 126063, 155207, 188506, 230547, 278788, 339223, 408482
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2010, Nov 29 2010

Keywords

Comments

Here the "emergent parts" of the partitions of n are defined to be the parts (with multiplicity) of all the partitions that do not contain "1" as a part, removed by one copy of the smallest part of every partition. Note that these parts are located in the head of the last section of the set of partitions of n. For more information see A182699.
Also total sum of parts of the regions that do not contain 1 as a part in the last section of the set of partitions of n (Cf. A083751, A187219). - Omar E. Pol, Mar 04 2012

Examples

			For n=7 the partitions of 7 that do not contain "1" as a part are
7
4 + 3
5 + 2
3 + 2 + 2
Then remove one copy of the smallest part of every partition. The rest are the emergent parts:
.,
4, .
5, .
3, 2, .
The sum of these parts is 4 + 5 + 3 + 2 = 14, so a(7)=14.
For n=10 the illustration in the link shows the location of the emergent parts (colored yellow and green) and the location of the filler parts (colored blue) in the last section of the set of partitions of 10.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<2 then 0
        else b(n, i-1) +b(n-i, i)
          fi
        end:
    c:= proc(n, i, k) option remember;
          if n<0 then 0
        elif n=0 then k
        elif i<2 then 0
        else c(n, i-1, k) +c(n-i, i, i)
          fi
        end:
    a:= n-> n*b(n, n) - c(n, n, 0):
    seq(a(n), n=1..40);  #  Alois P. Heinz, Dec 01 2010
  • Mathematica
    f[n_]:=Total[Flatten[Most/@Select[IntegerPartitions[n],!MemberQ[#,1]&]]]; Table[f[i],{i,50}] (* Harvey P. Dale, Dec 28 2010 *)
    b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n - i, i]]; c[n_, i_, k_] := c[n, i, k] = Which[n<0, 0, n==0, k, i<2, 0, True, c[n, i-1, k] + c[n-i, i, i]]; a[n_] := n*b[n, n] - c[n, n, 0]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)

Formula

a(n) = A138880(n) - A182708(n).
a(n) = A066186(n) - A066186(n-1) - A046746(n) = A138879(n) - A046746(n). - Omar E. Pol, Aug 01 2013
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (12*sqrt(2*n)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n)). - Vaclav Kotesovec, Jan 03 2019, extended Jul 05 2019

Extensions

More terms from Alois P. Heinz, Dec 01 2010

A182714 Number of 4's in the last section of the set of partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 3, 2, 5, 5, 10, 10, 17, 19, 31, 34, 51, 60, 86, 100, 139, 165, 223, 265, 349, 418, 543, 648, 827, 992, 1251, 1495, 1866, 2230, 2758, 3289, 4033, 4803, 5852, 6949, 8411, 9973, 12005, 14194, 17002, 20060, 23919, 28153, 33426, 39256, 46438
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2011

Keywords

Comments

Zero together with the first differences of A024788.
Also number of 4's in all partitions of n that do not contain 1 as a part.
a(n) is the number of partitions of n such that m(1) < m(3), where m = multiplicity; e.g., a(7) counts these 3 partitions: [4, 3], [3, 3, 1], [3, 2, 2]. - Clark Kimberling, Apr 01 2014
The last section of the set of partitions of n is also the n-th section of the set of partitions of any integer >= n. - Omar E. Pol, Apr 07 2014

Examples

			a(8) = 3 counts the 4's in 8 = 4+4 = 4+2+2. The 4's in 8 = 4+3+1 = 4+2+1+1 = 4+1+1+1+1 do not count.
From _Omar E. Pol_, Oct 25 2012: (Start)
--------------------------------------
Last section                   Number
of the set of                    of
partitions of 8                 4's
--------------------------------------
8 .............................. 0
4 + 4 .......................... 2
5 + 3 .......................... 0
6 + 2 .......................... 0
3 + 3 + 2 ...................... 0
4 + 2 + 2 ...................... 1
2 + 2 + 2 + 2 .................. 0
.   1 .......................... 0
.       1 ...................... 0
.       1 ...................... 0
.           1 .................. 0
.       1 ...................... 0
.           1 .................. 0
.           1 .................. 0
.               1 .............. 0
.           1 .................. 0
.               1 .............. 0
.               1 .............. 0
.                   1 .......... 0
.                   1 .......... 0
.                       1 ...... 0
.                           1 .. 0
------------------------------------
.           6 - 3 =              3
.
In the last section of the set of partitions of 8 the difference between the sum of the fourth column and the sum of the fifth column is 6 - 3 = 3 equaling the number of 4's, so a(8) = 3 (see also A024788).
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<2 then [0, 0]
        else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
             [g[1]+h[1], g[2]+h[2]+`if`(i=4, h[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq (a(n), n=1..70);  # Alois P. Heinz, Mar 19 2012
  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 3]], {n, 0, z}] (* Clark Kimberling, Apr 01 2014 *)
    b[n_, i_] := b[n, i] = Module[{g, h}, If[n==0, {1, 0}, If[i<2, {0, 0}, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[i==4, h[[1]], 0]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 4], {n, 52}] (* Robert Price, May 15 2020 *)
  • Sage
    A182714 = lambda n: sum(list(p).count(4) for p in Partitions(n) if 1 not in p)

Formula

It appears that A000041(n) = a(n+1) + a(n+2) + a(n+3) + a(n+4), n >= 0. - Omar E. Pol, Feb 04 2012

A211978 Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 2, 6, 12, 24, 40, 70, 108, 172, 256, 384, 550, 798, 1112, 1560, 2136, 2926, 3930, 5288, 6996, 9260, 12104, 15798, 20412, 26348, 33702, 43044, 54588, 69090, 86906, 109126, 136270, 169854, 210732, 260924, 321752, 396028, 485624, 594402, 725174, 883092, 1072208
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2013

Keywords

Comments

Also twice A006128, because the total number of parts in all partitions of n equals the sum of largest parts of all partitions of n. For a proof without words see the illustration of initial terms. Note that the sum of the lengths of all horizontal segments equals the sum of largest parts of all partitions of n. On the other hand, the sum of the lengths of all vertical segments equals the total number of parts of all partition of n. Therefore the sum of lengths of all horizontal segments equals the sum of lengths of all vertical segments.
a(n) is also the sum of the semiperimeters of the Ferrers boards of the partitions of n. Example: a(2)=6; indeed, the Ferrers boards of the partitions [2] and [1,1] of 2 are 2x1 rectangles; the sum of their semiperimeters is 3 + 3 = 6. - Emeric Deutsch, Oct 07 2016
a(n) is also the sum of the semiperimeters of the regions of the set of partitions of n. See the first illustration in the Example section. For more information see A278355. - Omar E. Pol, Nov 23 2016

Examples

			Illustration of initial terms as a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                         _ _ _      |
.                                         _ _ _|_    |
.                                         _ _    |   |
.                             _ _ _ _ _   _ _|_ _|_  |
.                             _ _ _    |  _ _ _    | |
.                   _ _ _ _   _ _ _|_  |  _ _ _|_  | |
.                   _ _    |  _ _    | |  _ _    | | |
.           _ _ _   _ _|_  |  _ _|_  | |  _ _|_  | | |
.     _ _   _ _  |  _ _  | |  _ _  | | |  _ _  | | | |
. _   _  |  _  | |  _  | | |  _  | | | |  _  | | | | |
.  |   | |   | | |   | | | |   | | | | |   | | | | | |
.
. 2    6     12        24         40          70
.
Also using the elements from the diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n) as shown below:
.
11...........................................................
.                                                           /\
.                                                          /  \
.                                                         /    \
7..................................                      /      \
.                                 /\                    /        \
5....................            /  \                /\/          \
.                   /\          /    \          /\  /              \
3..........        /  \        /      \        /  \/                \
2.....    /\      /    \    /\/        \      /                      \
1..  /\  /  \  /\/      \  /            \  /\/                        \
0 /\/  \/    \/          \/              \/                            \
. 0,2,  6,   12,         24,             40,                          70...
.
		

Crossrefs

Programs

  • Maple
    Q := sum(x^j/(1-x^j), j = 1 .. i): R := product(1-x^j, j = 1 .. i): g := sum(x^i*(1+i+Q)/R, i = 1 .. 100): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 41); # Emeric Deutsch, Oct 07 2016
  • Mathematica
    Array[2 Sum[DivisorSigma[0, m] PartitionsP[# - m], {m, #}] &, 42, 0] (* Michael De Vlieger, Mar 20 2020 *)

Formula

a(n) = 2*A006128(n).
a(n) = A225600(2*A000041(n)) = A225600(A139582(n)), n >= 1.
a(n) = (Sum_{m=1..p(n)} A194446(m)) + (Sum_{m=1..p(n)} A141285(m)) = 2*Sum_{m=1..p(n)} A194446(m) = 2*Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1.
The trivariate g.f. G(t,s,x) of the partitions of a nonnegative integer relative to weight (marked by x), number of parts (marked by t), and largest part (marked by s) is G(t,s,x) = Sum_{i>=1} t*s^i*x^i/product_{j=1..i} (1-tx^j). Setting s = t, we obtain the bivariate g.f. of the partitions relative to weight (marked by x) and semiperimeter of the Ferrers board (marked by t). The g.f. of a(n) is g(x) = Sum_{i>=1} ((x^i*(1 + i + Q(x))/R(x)), where Q(x) = sum_{j=1..i} (x^j/(1 - x^j)) and R(x) = product_{j=1..i}(1-x^j). g(x) has been obtained by setting t = 1 in dG(t,t,x))/dt. - Emeric Deutsch, Oct 07 2016
Previous Showing 31-40 of 287 results. Next