cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-57 of 57 results.

A139206 Smallest son factorial prime p of order n: smallest p such that p!/n-1 is prime.

Original entry on oeis.org

3, 3, 29, 5, 5, 5, 7, 11, 17, 5, 19, 7, 13, 7, 5, 37, 139, 19
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008, Apr 24 2008

Keywords

Comments

For smallest daughter factorial prime p of order n (smallest p such that (p!+n)/n = p!/n + 1 is prime), see A139074.
a(19) is currently unknown, a(20)=5, a(21)=7, a(22)=19.
a(19)>10000, a(23)=71, a(24)=3361. [From Andrew V. Sutherland, Apr 23 2008]
a(25)=17, a(26)=223, a(27)=157, a(28)=7, a(29)=41, a(30)=5, a(31)=31, a(32)=71, a(33)=13, a(34)=37, a(35)=19, a(36)=7, a(37)=47, a(38)=53, a(39)=13, a(40)=5, a(41)=127, a(42)=13, a(43)=67, a(44)=11, a(45)=17, a(46)=43, a(47)=71, a(48)=11, a(49)=19, a(50)=29, a(51)=17, a(52)=17, a(53)>10000.
a(19)>25000, a(53)>25000. [From Sean A. Irvine, Nov 14 2010]
a(54)=11, a(55)=23, a(56)=7, a(57)=433.
a(58)=283, a(59)>1500, a(60..66)=(7,139,239,7,11,13,13), a(67), a(68) > 1300, a(69..72)=(29,7,83,13), a(73)>1000. [From M. F. Hasler, Nov 03 2013]
Sequence A151900 (tentatively?) lists "singular indices", i.e., those for which a(n) is difficult to find. - M. F. Hasler, Nov 03 2013

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, Prime[k]], {n, 1, 100}]; a (*Artur Jasinski*)
  • PARI
    a(n)=forprime(p=1,,p!%n==0 && ispseudoprime(p!/n-1) && return(p)) \\ - M. F. Hasler, Nov 03 2013

Extensions

Edited by M. F. Hasler, Nov 03 2013

A139092 a(n) = number of distinct prime divisors of (9+prime(n)!)/9.

Original entry on oeis.org

3, 3, 2, 2, 2, 3, 2, 3, 4, 4, 5, 3, 3, 6, 5, 2, 3, 4, 3, 3, 4, 4, 4, 3, 7, 3, 3
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Comments

Conjecture: all prime divisors in A139089 are distinct
a(31) >= 4. - Amiram Eldar, Feb 13 2020

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = (Prime[n]! + 9)/9; AppendTo[a, w], {n, 4, 16}]; a
    PrimeNu[(9+Prime[Range[4,25]]!)/9] (* Harvey P. Dale, Jul 25 2019 *)

Formula

a(n) = A001221(A139089(n)). - Amiram Eldar, Feb 13 2020

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010
a(23)-a(30) using factordb.com from Amiram Eldar, Feb 13 2020

A139207 Smallest father factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime.

Original entry on oeis.org

5, 2, 2947253997913233984847871999999, 29, 23, 19, 719, 4989599, 39520825343999, 11, 11058645491711999, 419, 479001599, 359, 7, 860234568201646565394748723848806399999999
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

For smallest daughter factorial prime p of order n (smallest p such that (p!+n)/n = p!/n + 1 is prime) see A139074.
For smallest son factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime see A139206.
For more terms see A139206.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, (Prime[k]! - n)/n], {n, 1, 100}]; a

A139073 Smallest prime number of the form (n+k!)/n.

Original entry on oeis.org

2, 2, 3, 7, 1009, 2, 5702401, 631, 4481, 13, 566092801, 3, 23452949585516450807808000001, 259201, 337, 2521, 3553839003727872684550301886383176323956736000000001, 41
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ k = 1; While[ ! PrimeQ[ (k! + n)/n ], k++ ]; AppendTo[ a, (k! + n)/n ], {n, 1, 100} ]; a [Corrected May 06 2008]
  • PARI
    a(n)=my(k,t);until(denominator(t=k++!/n+1)==1&&ispseudoprime(t),);t \\ Charles R Greathouse IV, Jul 19 2011

Formula

a(n) = (n + A139072(n)!)/n. - Amiram Eldar, Oct 14 2024

A139091 a(n) = largest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

17, 827, 22319071, 1718296754087, 35662591735219, 477262171871, 1609727002420791262479701, 146215297537890243023, 2020914387433686758547638152441, 1073774770807266077323
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, Last[w][[1]]], {n, 4, 16}]; a

A139090 a(n) = smallest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

3, 31, 31, 23, 379, 83, 610301, 293, 101, 47, 281, 127, 278174297, 2971, 109, 5090615254324820333, 46411, 106087, 269, 288931, 59047158151, 120871, 373, 19140822523, 56595118147, 1708207, 331, 38749, 157, 2927, 2143
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, First[w][[1]]], {n, 4, 16}]; a
    Table[FactorInteger[p!/9+1][[1,1]],{p,Prime[Range[4,35]]}] (* Harvey P. Dale, Sep 19 2020 *)

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010

A348153 Primes for which there is no pair (k,q) with k a positive integer and q another prime, such that p=q*(2k+1)-2k.

Original entry on oeis.org

2, 3, 5, 17, 41, 73, 89, 97, 137, 193, 233, 257, 313, 353, 449, 457, 569, 641, 809, 857, 929, 1033, 1049, 1097, 1129, 1153, 1193, 1217, 1289, 1409, 1433, 1601, 1609, 1697, 1753, 1889, 1913, 1993, 2081, 2137, 2153, 2273, 2297, 2393, 2473, 2617, 2633, 2657, 2689, 2713, 2753, 2777, 2969
Offset: 1

Views

Author

René Gy, Oct 03 2021

Keywords

Comments

There are primes p for which there exist a positive integer k and another prime q such that p=q*(2k+1)-2k. See A136020, A091180, A136061 and the subsequent sequences. Such k is called an "order" of the prime p. Note that q is necessarily larger than 2 and that 4*k is necessarily smaller than p-1. A prime may belong to more than one order, but the primes listed in the present sequence do not belong to any order.
As soon as they are larger than 8, all members minus 1 are multiples of 8.

Crossrefs

Programs

  • Mathematica
    lim = 2000; p = 2; listc = {}; listp = {}; While[p < lim, n = 1;
    While[n <= (p - 3)/4,
      If[PrimeQ[(p + 2 n)/(2 n + 1)], n = 2*p, n = n + 1]];
    If[n == 2*p, AppendTo[listc, p]]; AppendTo[listp, p];
    p = NextPrime[p]]; Complement[listp, listc]
  • PARI
    isok(p) = {if (isprime(p), for (k=1, (p-3)/4, my(q = (p+2*k)/(2*k+1)); if ((denominator(q)==1) && isprime(q), return(0));); return (1););} \\ Michel Marcus, Oct 07 2021

Extensions

More terms from Michel Marcus, Oct 04 2021
Previous Showing 51-57 of 57 results.