cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 86 results. Next

A354929 Numbers of the form 2*p^e, with p an odd prime and e >= 2.

Original entry on oeis.org

18, 50, 54, 98, 162, 242, 250, 338, 486, 578, 686, 722, 1058, 1250, 1458, 1682, 1922, 2662, 2738, 3362, 3698, 4374, 4394, 4418, 4802, 5618, 6250, 6962, 7442, 8978, 9826, 10082, 10658, 12482, 13122, 13718, 13778, 15842, 18818, 20402, 21218, 22898, 23762, 24334, 25538, 29282, 31250, 32258
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2022

Keywords

Comments

Conjecturally numbers k > 1 such that A047994(k) = A344005(k) (see A354928), and k is in A265128. See comments in A346608.

Crossrefs

Subsequence of A278568.
Intersection of A265128 and A354928 (conjectured).

Programs

  • Mathematica
    Select[Range[33000], IntegerExponent[#, 2] == 1 && CompositeQ[#/2] && PrimePowerQ[#/2] &] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    isA354929(n) = ((2==(n%4)) && (isprimepower(n/2)>1));

Formula

Sum_{n>=1} 1/a(n) = (A136141 - 1/2)/2 = 0.1365783345... - Amiram Eldar, Jun 18 2022

A382294 Decimal expansion of the asymptotic mean of the excess of the number of Fermi-Dirac factors of k over the number of distinct prime factors of k when k runs over the positive integers.

Original entry on oeis.org

1, 3, 6, 0, 5, 4, 4, 7, 0, 4, 9, 6, 2, 2, 8, 3, 6, 5, 2, 2, 9, 9, 8, 9, 2, 6, 3, 8, 3, 7, 6, 8, 9, 9, 7, 6, 1, 6, 5, 8, 2, 4, 6, 9, 0, 8, 3, 7, 8, 3, 9, 7, 1, 0, 3, 6, 8, 9, 3, 4, 2, 7, 8, 7, 1, 5, 6, 1, 4, 9, 7, 6, 6, 7, 4, 9, 7, 7, 1, 7, 9, 1, 4, 6, 0, 6, 5, 2, 2, 8, 2, 9, 7, 5, 0, 8, 5, 4, 1, 4, 8, 7, 3, 5, 9
Offset: 0

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

Analogous to Sum_{p prime} 1/(p*(p-1)) (A136141), which is the asymptotic mean of the excess of the number of prime factors over the number of distinct prime factors (A046660).

Examples

			0.13605447049622836522998926383768997616582469083783...
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{c = CoefficientList[Series[-x + Sum[x^(2^k)/(1+x^(2^k)), {k, 0, n}],{x, 0, 2^n}], x]},Sum[c[[i]] * PrimeZetaP[i-1], {i, 3, Length[c]-2}]]; RealDigits[s[10], 10, 120][[1]]
  • PARI
    default(realprecision, 120); default(parisize, 10000000);
    f(x, n) = -x + sum(k = 0, n, x^(2^k)/(1+x^(2^k)));
    sumeulerrat(f(1/p, 8))

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A382290(k).
Equal Sum_{k>=3} A088705(k) * P(k), where P(s) is the prime zeta function.
Equals Sum_{p prime} f(1/p), where f(x) = -x + Sum_{k>=0} x^(2^k)/(1+x^(2^k)).

A137148 a(n) = k*phi(k), where k is the n-th nonprime number.

Original entry on oeis.org

1, 8, 12, 32, 54, 40, 48, 84, 120, 128, 108, 160, 252, 220, 192, 500, 312, 486, 336, 240, 512, 660, 544, 840, 432, 684, 936, 640, 504, 880, 1080, 1012, 768, 2058, 1000, 1632, 1248, 972, 2200, 1344, 2052, 1624, 960, 1860, 2268, 2048, 3120, 1320, 2176, 3036
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2008

Keywords

Comments

Numbers that occur in A002618 but not in A036689.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[!PrimeQ[n], AppendTo[a, n EulerPhi[n]]], {n, 1, 100}]; a

Formula

a(n) = A002618(A018252(n)). - R. J. Mathar, Jan 18 2021
Sum_{n>=1} 1/a(n) = A065484 - A136141 = 1.430699927388... . - Amiram Eldar, Oct 26 2024

A190117 a(n) = Sum_{k=1..n} k*k', where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 2, 5, 21, 26, 56, 63, 159, 213, 283, 294, 486, 499, 625, 745, 1257, 1274, 1652, 1671, 2151, 2361, 2647, 2670, 3726, 3976, 4366, 5095, 5991, 6020, 6950, 6981, 9541, 10003, 10649, 11069, 13229, 13266, 14064, 14688, 17408, 17449, 19171, 19214, 21326, 23081, 24231, 24278, 29654, 30340, 32590
Offset: 1

Views

Author

Giorgio Balzarotti, May 04 2011

Keywords

Examples

			1*1' + 2*2' + 3*3' = 0 + 2 + 3 = 5 -> a(3) = 5.
		

Crossrefs

Partial sums of A190116.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(der(i)*i,i=1..n),n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]];
    Table[Sum[k*A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)

Formula

a(n) ~ c * n^3 / 3, where c = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Jun 22 2025

A216419 Odd powers that are not prime powers.

Original entry on oeis.org

225, 441, 1089, 1225, 1521, 2025, 2601, 3025, 3249, 3375, 3969, 4225, 4761, 5625, 5929, 7225, 7569, 8281, 8649, 9025, 9261, 9801, 11025, 12321, 13225, 13689, 14161, 15129, 16641, 17689, 18225, 19881, 20449, 21025, 21609, 23409, 24025, 25281, 25921, 27225
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 06 2012

Keywords

Comments

Numbers in A075109 but not in A000961.
Also odd perfect powers having no primitive root (intersection of A075109 and A175594).

Examples

			81 = 9^2 as well as 81 = 3^4, therefore 81 is not a term.
225 can be expressed so in one way as (3*5)^2, therefore 225 is a term.
		

Crossrefs

Programs

  • Magma
    [n : n in [3..27225 by 2] | IsPower(n) and EulerPhi(n) ne CarmichaelLambda(n)]; // Arkadiusz Wesolowski, Nov 09 2013
  • Mathematica
    nn = 27500; lst = Union[Flatten[Table[n^i, {i, Prime[Range[PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]]; Select[lst, OddQ[#] && ! IntegerQ@PrimitiveRoot[#] &] (* Most of the code is from T. D. Noe *)

Formula

Sum_{n>=1} 1/a(n) = 1/2 + Sum_{k>=2} mu(k)*(1-zeta(k)*(2^k-1)/2^k) - Sum_{p prime} 1/(p*(p-1)) = 0.0158808884... - Amiram Eldar, Dec 21 2020

A272531 Decimal expansion of C_2 (so named by S. Finch), a constant which is an analog of Niven's constant when mean of exponents is considered instead of maximum.

Original entry on oeis.org

1, 1, 8, 7, 3, 0, 9, 3, 4, 9, 5, 7, 6, 4, 0, 8, 4, 3, 0, 1, 7, 6, 6, 6, 8, 8, 4, 1, 1, 5, 5, 3, 3, 8, 6, 2, 3, 1, 2, 5, 7, 8, 6, 6, 6, 9, 9, 6, 2, 5, 4, 8, 8, 7, 8, 3, 9, 5, 9, 6, 0, 8, 7, 8, 7, 8, 9, 3, 3, 9, 3, 1, 2, 6, 6, 5, 9, 0, 2, 9, 0, 1, 1, 6, 2, 5, 1, 7, 7, 7, 9, 0, 3, 2, 3, 6, 9, 8, 6, 8
Offset: 0

Views

Author

Jean-François Alcover, May 02 2016

Keywords

Examples

			0.1187309349576408430176668841155338623125786669962548878395960878789...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95) and Section 2.6 Niven's constant p.112.

Crossrefs

Programs

  • Mathematica
    digits = 100;
    C1 = NSum[PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits] ;
    M = EulerGamma - NSum[PrimeZetaP[n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits] ;
    N0 = PrimeZetaP[2];
    C2 = C1 (1 - M) - N0;
    RealDigits[C2, 10, digits][[1]]

Formula

C_2 = C_1 (1 - M) - N, using Finch's notation, where C_1 is A136141, M A077761 and N A085548.

A355462 Powerful numbers divisible by exactly 2 distinct primes.

Original entry on oeis.org

36, 72, 100, 108, 144, 196, 200, 216, 225, 288, 324, 392, 400, 432, 441, 484, 500, 576, 648, 675, 676, 784, 800, 864, 968, 972, 1000, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1728, 1936, 1944, 2000, 2025, 2116, 2304, 2312, 2500
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2022

Keywords

Comments

First differs from A286708 at n = 25.
Number of the form p^i * q^j, where p != q are primes and i,j > 1.
Numbers k such that A001221(k) = 2 and A051904(k) >= 2.
The possible values of the number of the divisors (A000005) of terms in this sequence is any composite number that is not 8 or twice a prime (A264828 \ {1, 8}).
675 = 3^3*5^2 and 676 = 2^2*13^2 are 2 consecutive integers in this sequence. There are no other such pairs below 10^22 (the lesser members of such pairs are terms of A060355).

Examples

			36 is a term since 36 = 2^2 * 3^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], Length[(e = FactorInteger[#][[;; , 2]])] == 2 && Min[e] > 1 &]
  • PARI
    is(n) = {my(f=factor(n)); #f~ == 2 && vecmin(f[,2]) > 1};

Formula

Sum_{n>=1} 1/a(n) = ((Sum_{p prime} (1/(p*(p-1))))^2 - Sum_{p prime} (1/(p^2*(p-1)^2)))/2 = 0.1583860791... .

A382551 Decimal expansion of Sum_{p prime} 1/((p - 1)*p^3).

Original entry on oeis.org

1, 4, 6, 1, 4, 6, 6, 0, 9, 7, 0, 9, 2, 8, 6, 0, 9, 2, 9, 3, 4, 7, 1, 0, 7, 8, 0, 3, 5, 7, 9, 8, 7, 7, 6, 0, 4, 7, 0, 0, 9, 7, 8, 7, 0, 9, 1, 7, 1, 4, 4, 3, 3, 6, 6, 8, 5, 9, 1, 5, 1, 2, 0, 3, 0, 3, 9, 1, 2, 4, 1, 1, 5, 9, 7, 1, 9, 2, 9, 3, 5, 7, 4, 9, 2, 0, 7, 0, 1, 3, 9, 3, 1, 4, 4, 1, 3, 9
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.14614660970928609293471078035798776047009787091714433668591512030391...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)*p^3)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals -A085548 - A085541 + A136141.
Equals Sum_{k>=4} P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382552 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p).

Original entry on oeis.org

6, 0, 1, 9, 0, 8, 3, 2, 5, 6, 9, 8, 8, 4, 0, 1, 6, 0, 0, 5, 2, 8, 8, 5, 6, 7, 0, 6, 6, 6, 4, 9, 7, 3, 0, 3, 5, 6, 0, 8, 5, 8, 6, 2, 4, 0, 9, 2, 1, 3, 1, 4, 1, 0, 3, 9, 8, 1, 8, 3, 2, 6, 8, 5, 3, 4, 5, 2, 6, 6, 8, 4, 6, 5, 2, 3, 2, 1, 8, 5, 7, 5, 9, 6, 1, 0, 8, 8, 9, 3, 5, 9, 3, 2, 6, 7, 2, 9, 6, 1
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.60190832569884016005288567066649730356085862...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*p)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals -A136141 + A086242.
Equals Sum_{k>=3} (k-2) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382584 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p*(p + 1)).

Original entry on oeis.org

1, 9, 0, 2, 2, 2, 4, 7, 7, 1, 5, 3, 0, 2, 2, 1, 0, 8, 3, 1, 4, 1, 2, 4, 6, 1, 7, 3, 9, 0, 9, 4, 9, 2, 4, 3, 0, 3, 6, 8, 0, 8, 8, 3, 2, 8, 9, 3, 7, 8, 6, 8, 0, 7, 1, 5, 8, 8, 9, 7, 2, 6, 7, 6, 1, 8, 6, 9, 1, 6, 2, 6, 9, 0, 2, 0, 7, 9, 5, 6, 5, 4, 2, 0, 0, 3, 0, 5, 5, 8, 9, 6, 9, 1, 1, 2, 2, 1, 9, 2, 9, 7, 3
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.1902224771530221083141246173909492430368088328937868071588972676186916269020795654200305...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*p*(p+1))) \\ Amiram Eldar, Apr 02 2025

Formula

Equals -3*A136141/4 + A086242/2 + A179119/4.
Equals Sum_{k>=2} (k-1) * (P(2*k) + P(2*k+1)), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025
Previous Showing 41-50 of 86 results. Next