A368951
Number of connected labeled graphs with n edges and n vertices and with loops allowed.
Original entry on oeis.org
1, 1, 2, 10, 79, 847, 11436, 185944, 3533720, 76826061, 1880107840, 51139278646, 1530376944768, 49965900317755, 1767387701671424, 67325805434672100, 2747849045156064256, 119626103584870552921, 5533218319763109888000, 270982462739224265922466
Offset: 0
From _Gus Wiseman_, Feb 12 2024: (Start)
The a(0) = 1 through a(3) = 10 loop-graphs:
{} {11} {11,12} {11,12,13}
{22,12} {11,12,23}
{11,13,23}
{22,12,13}
{22,12,23}
{22,13,23}
{33,12,13}
{33,12,23}
{33,13,23}
{12,13,23}
(End)
This is the connected covering case of
A014068.
Allowing any number of edges gives
A062740, connected case of
A322661.
This is the connected case of
A368597.
For at most n edges we have
A369197.
A000085 counts set partitions into singletons or pairs.
-
egf:= (L-> 1-L/2-log(1+L)/2-L^2/4)(LambertW(-x)):
a:= n-> n!*coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 10 2024
-
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(-log(1-t)/2 + t/2 - t^2/4 + 1))}
A367917
BII-numbers of set-systems with the same number of edges as covered vertices.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152
Offset: 1
The terms together with the corresponding set-systems begin:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
24: {{3},{1,3}}
26: {{2},{3},{1,3}}
28: {{1,2},{3},{1,3}}
34: {{2},{2,3}}
35: {{1},{2},{2,3}}
37: {{1},{1,2},{2,3}}
A070939 gives length of binary expansion.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A057500,
A059201,
A072639,
A096111,
A116508,
A309326,
A326031,
A326702,
A326753,
A326754,
A367770,
A367902,
A367905.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
Select[Range[0,100], Length[bpe[#]]==Length[Union@@bpe/@bpe[#]]&]
A368731
Number of non-isomorphic n-element sets of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 10, 97, 2160, 126862, 21485262, 11105374322, 18109358131513, 95465831661532570, 1660400673336788987026, 96929369602251313489896310, 19268528295096123543660356281600, 13203875101002459910158494602665950757, 31517691852305548841992346407978317698725021
Offset: 0
Non-isomorphic representatives of the a(3) = 10 set-systems:
{{1},{2},{3}}
{{1},{2},{1,2}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
The case of labeled covering graphs is
A367863, binomial transform
A367862.
These include the set-systems ranked by
A367917.
Requiring all edges to be singletons or pairs gives
A368598.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,n}],{n}]]],{n,0,4}]
-
a(n) = polcoef(G(n, n), n) \\ G defined in A368186. - Andrew Howroyd, Jan 11 2024
A136557
a(n) = Sum_{k=0..n} binomial(2^k + n-k-1, k).
Original entry on oeis.org
1, 2, 6, 45, 1436, 171836, 68149425, 89431630740, 396956313475102, 6099399658235428041, 331007760926212498510464, 64484289650612910347505873728, 45677712418497545460138258802186905
Offset: 0
-
[(&+[Binomial(2^k +n-k-1, k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 15 2021
-
A136557:= n-> add(binomial(2^k +n-k-1, k), k=0..n); seq(A136557(n), n=0..20); # G. C. Greubel, Mar 15 2021
-
Table[Sum[Binomial[2^k+n-k-1, k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
a(n)=sum(k=0,n,binomial(2^k+n-k-1,k))
-
/* As coefficient of x^n in the g.f.: */ {a(n)=polcoeff(sum(i=0,n,((1+2^i*x+x*O(x^n))*(1-x-2^i*x^2))^-1*log(1+2^i*x+x*O(x^n))^i/i!),n)}
-
[sum(binomial(2^k +n-k-1, k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Mar 15 2021
A246699
Squarefree n such that C(2^n - 1, n) is also squarefree, where C is the binomial coefficient.
Original entry on oeis.org
1, 2, 3, 6, 11, 21, 29, 31, 51, 55, 57
Offset: 1
-
[n: n in [1..200] | IsSquarefree(n) and IsSquarefree(Binomial(2^n-1, n))];
-
Select[Range[100], SquareFreeQ[#] && SquareFreeQ[Binomial[2^# - 1, #]] &] (* Vincenzo Librandi, Nov 14 2014 *)
Select[Range[60],AllTrue[{#,Binomial[2^#-1,#]},SquareFreeQ]&] (* Harvey P. Dale, Feb 07 2025 *)
-
is(n)=issquarefree(n) && issquarefree(binomial(2^n-1,n)) \\ Charles R Greathouse IV, Nov 16 2014
A245569
Numbers n such that binomial(2^n-1,n) is squarefree.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 11, 12, 21, 28, 29, 31, 51, 54, 55, 57
Offset: 1
-
Select[Range[0,57],SquareFreeQ[Binomial[2^#-1,#]]&] (* Ivan N. Ianakiev, Nov 18 2014 *)
-
is(n)=issquarefree(binomial(2^n-1,n))
-
is(n)={t=1; n&&n=vecsort(concat(vector(n,k,factor(if(kx)(t=(2^n-k)/k/denominator(t)),0)~))); for(i=2,#n,if(n[1,i]==n[1,i-1],n[2,i]+=n[2,i-1];n[2,i-1]=0));!n||vecmax(n[2,])<2} \\ Limiting "factor" to precomputed primes might yield a false positive, but no term > 57 is found so far.
Comments