A332119
a(n) = (10^(2n+1)-1)/9 + 8*10^n.
Original entry on oeis.org
9, 191, 11911, 1119111, 111191111, 11111911111, 1111119111111, 111111191111111, 11111111911111111, 1111111119111111111, 111111111191111111111, 11111111111911111111111, 1111111111119111111111111, 111111111111191111111111111, 11111111111111911111111111111, 1111111111111119111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)9(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11911...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332112 ..
A332118 (variants with different middle digit 2, ..., 8).
-
A332119 := n -> (10^(2*n+1)-1)/9+8*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 8*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,1],{9},PadRight[{},n,1]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,191,11911},20] (* Harvey P. Dale, Mar 30 2024 *)
-
apply( {A332119(n)=10^(n*2+1)\9+8*10^n}, [0..15])
-
def A332119(n): return 10**(n*2+1)//9+8*10**n
A138826
Concatenation of 2n-1 digits 1, n digits 0 and 2n-1 digits 1.
Original entry on oeis.org
101, 11100111, 1111100011111, 111111100001111111, 11111111100000111111111, 1111111111100000011111111111, 111111111111100000001111111111111, 11111111111111100000000111111111111111
Offset: 1
n ........... a(n)
1 ........... 101
2 ......... 11100111
3 ....... 1111100011111
4 ..... 111111100001111111
5 ... 11111111100000111111111
-
Table[(1000^n + 10)*(100^n - 10)/900, {n, 10}] (* Paolo Xausa, Aug 08 2024 *)
-
Vec(x*(1100000000*x^3-2000000*x^2+888910*x+101)/((x-1)*(100*x-1)*(1000*x-1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A332121
a(n) = 2*(10^(2n+1)-1)/9 - 10^n.
Original entry on oeis.org
1, 212, 22122, 2221222, 222212222, 22222122222, 2222221222222, 222222212222222, 22222222122222222, 2222222221222222222, 222222222212222222222, 22222222222122222222222, 2222222222221222222222222, 222222222222212222222222222, 22222222222222122222222222222, 2222222222222221222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
Cf.
A332131 ..
A332191 (variants with different repeated digit 3, ..., 9).
-
A332121 := n -> 2*(10^(2*n+1)-1)/9-10^n;
-
Array[2 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332121(n)=10^(n*2+1)\9*2-10^n}, [0..15])
-
def A332121(n): return 10**(n*2+1)//9*2-10**n
A332113
a(n) = (10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
3, 131, 11311, 1113111, 111131111, 11111311111, 1111113111111, 111111131111111, 11111111311111111, 1111111113111111111, 111111111131111111111, 11111111111311111111111, 1111111111113111111111111, 111111111111131111111111111, 11111111111111311111111111111, 1111111111111113111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)3(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11311...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332123 ..
A332193 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332113 := n -> (10^(2*n+1)-1)/9+2*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332113(n)=10^(n*2+1)\9+2*10^n}, [0..15])
-
def A332113(n): return 10**(n*2+1)//9+2*10**n
A332129
a(n) = 2*(10^(2n+1)-1)/9 + 7*10^n.
Original entry on oeis.org
9, 292, 22922, 2229222, 222292222, 22222922222, 2222229222222, 222222292222222, 22222222922222222, 2222222229222222222, 222222222292222222222, 22222222222922222222222, 2222222222229222222222222, 222222222222292222222222222, 22222222222222922222222222222, 2222222222222229222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332119 ..
A332189 (variants with different repeated digit 1, ..., 8).
Cf.
A332120 ..
A332128 (variants with different middle digit 0, ..., 8).
-
A332129 := n -> 2*(10^(2*n+1)-1)/9+7*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{9,292,22922},20] (* Harvey P. Dale, Jun 25 2020 *)
-
apply( {A332129(n)=10^(n*2+1)\9*2+7*10^n}, [0..15])
-
def A332129(n): return 10**(n*2+1)//9*2+7*10**n
A332180
a(n) = 8*(10^(2n+1)-1)/9 - 8*10^n.
Original entry on oeis.org
0, 808, 88088, 8880888, 888808888, 88888088888, 8888880888888, 888888808888888, 88888888088888888, 8888888880888888888, 888888888808888888888, 88888888888088888888888, 8888888888880888888888888, 888888888888808888888888888, 88888888888888088888888888888, 8888888888888880888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332181 ..
A332189 (variants with different middle digit 1, ..., 9).
Subsequence of
A006072 (numbers with mirror symmetry about middle),
A153806 (strobogrammatic cyclops numbers), and
A204095 (numbers whose decimal digits are in {0,8}).
-
A332180 := n -> 8*((10^(2*n+1)-1)/9-10^n);
-
Array[8 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332180(n)=(10^(n*2+1)\9-10^n)*8}, [0..15])
-
def A332180(n): return (10**(n*2+1)//9-10**n)*8
A332130
a(n) = (10^(2n+1)-1)/3 - 3*10^n.
Original entry on oeis.org
0, 303, 33033, 3330333, 333303333, 33333033333, 3333330333333, 333333303333333, 33333333033333333, 3333333330333333333, 333333333303333333333, 33333333333033333333333, 3333333333330333333333333, 333333333333303333333333333, 33333333333333033333333333333, 3333333333333330333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332131 ..
A332139 (variants with different middle digit 1, ..., 9).
-
A332130 := n -> (10^(2*n+1)-1)/3-3*10^n;
-
Array[ ((10^(2 # + 1)-1)/3 - 3*10^#) &, 15, 0]
-
apply( {A332130(n)=10^(n*2+1)\3-3*10^n}, [0..15])
-
def A332130(n): return 10**(n*2+1)//3-3*10**n
A153806
Strobogrammatic cyclops numbers.
Original entry on oeis.org
0, 101, 609, 808, 906, 11011, 16091, 18081, 19061, 61019, 66099, 68089, 69069, 81018, 86098, 88088, 89068, 91016, 96096, 98086, 99066, 1110111, 1160911, 1180811, 1190611, 1610191, 1660991, 1680891, 1690691, 1810181, 1860981
Offset: 1
1680891 is a member because it is the same upside down (A000787) and also a cyclops number (A134808).
-
Select[Range[10^7], And[OddQ@ Length@#, Part[#, Ceiling[Length[#]/2]] == 0, Times @@ Boole@ Map[MemberQ[{0, 1, 6, 8, 9}, #] &, Union@ #] == 1, Count[#, 0] == 1, (Take[#, Floor[Length[#]/2]] /. {6 -> 9, 9 -> 6}) ==
Reverse@ Take[#, -Floor[Length[#]/2]]] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jul 05 2016 *)
-
import sys
f = open('b153806.txt', 'w')
i = 1
n = 0
a = [""]
r = [""] #reversed strobogrammatically
while True:
for x,y in zip(a,r):
f.write(str(i)+" "+x+"0"+y+"\n")
i += 1
if i>20000:
f.close()
sys.exit()
a = sum([[x+"1",x+"6",x+"8",x+"9"] for x in a],[])
r = sum([["1"+x,"9"+x,"8"+x,"6"+x] for x in r],[])
# Kenny Lau, Jul 05 2016
A160717
Cyclops triangular numbers.
Original entry on oeis.org
0, 105, 406, 703, 903, 11026, 13041, 14028, 15051, 27028, 36046, 41041, 43071, 46056, 61075, 66066, 75078, 77028, 83028, 85078, 93096, 1110795, 1130256, 1160526, 1180416, 1250571, 1290421, 1330896, 1350546, 1360425, 1380291
Offset: 1
105 is in the sequence since it is both a triangular number (105 = 1 + 2 + ... + 14) and a Cyclops number (number of digits is odd, and the only zero is the middle digit). - _Michael B. Porter_, Jul 08 2016
-
count:= 1: A[1]:= 0:
for d from 1 to 3 do
for x from 0 to 9^d-1 do
L:= convert(x+9^d,base,9);
X:= add((L[i]+1)*10^(i-1),i=1..d);
for y from 0 to 9^d-1 do
L:= convert(y+9^d,base,9);
Y:= add((L[i]+1)*10^(i-1),i=1..d);
Z:= Y + 10^(d+1)*X;
if issqr(1+8*Z) then
count:= count+1;
A[count]:= Z;
fi
od od od:
seq(A[i],i=1..count); # Robert Israel, Jul 08 2016
-
cyclopsQ[n_] := Block[{id=IntegerDigits@n,lg=Floor[Log[10,n]+1]}, Count[id,0]==1 && OddQ@lg && id[[(lg+1)/2]]==0]; lst = {0}; Do[t = n (n + 1)/2; If[ cyclopsQ@t, AppendTo[lst, t]], {n, 0, 1670}]; lst (* Robert G. Wilson v, Jun 09 2009 *)
cyclpsQ[n_]:=With[{len=IntegerLength[n]},OddQ[len]&&DigitCount[n,10,0]==1&&IntegerDigits[n][[(len+1)/2]]==0]; Join[{0},Select[ Accumulate[ Range[2000]],cyclpsQ]] (* Harvey P. Dale, Nov 05 2024 *)
A332139
a(n) = (10^(2*n+1)-1)/3 + 6*10^n.
Original entry on oeis.org
9, 393, 33933, 3339333, 333393333, 33333933333, 3333339333333, 333333393333333, 33333333933333333, 3333333339333333333, 333333333393333333333, 33333333333933333333333, 3333333333339333333333333, 333333333333393333333333333, 33333333333333933333333333333, 3333333333333339333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332130 ..
A332138 (variants with different middle digit 0, ..., 8).
-
A332139 := n -> (10^(2*n+1)-1)/3+6*10^n;
-
Array[ (10^(2 # + 1)-1)/3 + 6*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{9,393,33933},20] (* Harvey P. Dale, Sep 17 2020 *)
-
apply( {A332139(n)=10^(n*2+1)\3+6*10^n}, [0..15])
-
def A332139(n): return 10**(n*2+1)//3+6*10**n
Comments