cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A346866 Sum of divisors of the n-th second hexagonal number.

Original entry on oeis.org

4, 18, 32, 91, 72, 168, 192, 270, 260, 576, 288, 868, 560, 720, 768, 1488, 864, 1482, 1120, 1764, 1408, 2808, 1152, 3420, 2232, 2268, 2880, 4480, 1800, 4464, 3328, 5292, 3264, 5184, 3456, 6734, 4712, 5760, 4480, 10890, 3528, 10368, 5280, 7560, 8736, 9216, 5760, 12152
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the smallest Dyck path has a peak and the largest Dyck path has a valley.
So knowing this characteristic shape we can know if a number is a second hexagonal number (or not) just by looking at the diagram, even ignoring the concept of second hexagonal number.
Therefore we can see a geometric pattern of the distribution of the second hexagonal numbers in the stepped pyramid described in A245092.

Examples

			a(3) = 32 because the sum of divisors of the third second hexagonal number (i.e., 21) is 1 + 3 + 7 + 21 = 32.
On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a peak and the largest Dyck path has a valley as shown below.
Illustration of initial terms:
---------------------------------------------------------------------------------------
  n  h(n)  a(n)  Diagram
---------------------------------------------------------------------------------------
                    _             _                     _                            _
                   | |           | |                   | |                          | |
                _ _|_|           | |                   | |                          | |
  1    3    4  |_ _|             | |                   | |                          | |
                                 | |                   | |                          | |
                              _ _| |                   | |                          | |
                             |  _ _|                   | |                          | |
                          _ _|_|                       | |                          | |
                         |  _|                         | |                          | |
                _ _ _ _ _| |                           | |                          | |
  2   10   18  |_ _ _ _ _ _|                           | |                          | |
                                                _ _ _ _|_|                          | |
                                               | |                                  | |
                                              _| |                                  | |
                                             |  _|                                  | |
                                          _ _|_|                                    | |
                                      _ _|  _|                                      | |
                                     |_ _ _|                                        | |
                                     |                                 _ _ _ _ _ _ _| |
                                     |                                |    _ _ _ _ _ _|
                _ _ _ _ _ _ _ _ _ _ _|                                |   |
  3   21   32  |_ _ _ _ _ _ _ _ _ _ _|                             _ _|   |
                                                                  |       |
                                                                 _|    _ _|
                                                                |     |
                                                             _ _|    _|
                                                         _ _|      _|
                                                        |        _|
                                                   _ _ _|    _ _|
                                                  |         |
                                                  |  _ _ _ _|
                                                  | |
                                                  | |
                                                  | |
                                                  | |
               _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4   36   91 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column h gives the n-th second hexagonal number (A014105).
The widths of the main diagonal of the diagrams are [0, 0, 0, 1] respectively.
a(n) is the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 11 + 5 + 5 + 11 = 32, so a(3) = 32.
For n = 4 there is only one region (or part) of size 91 in the fourth diagram so a(4) = 91.
		

Crossrefs

Bisection of A074285.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors), A347155 (of nontriangular numbers).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n*(2*n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
  • PARI
    a(n) = sigma(n*(2*n + 1)); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = A000203(A014105(n)).
Sum_{k=1..n} a(k) ~ 4*n^3/3. - Amiram Eldar, Dec 31 2024

A224832 Numbers k such that the sum of reciprocals of even divisors of k is an integer.

Original entry on oeis.org

12, 56, 992, 16256, 60480, 65520, 4357080, 47139840, 67100672, 91065600, 285981696, 2758909440, 17179738112, 87722956800, 132867440640, 274877382656, 306007080960, 806062473216, 1409150457792, 363485766938112, 12177456042320640, 29884246553283840, 40316371715063808
Offset: 1

Views

Author

Michel Lagneau, Jul 21 2013

Keywords

Comments

This sequence is a subsequence of A194771. The sequence A139256 (twice even perfect numbers) is a subsequence and the sum of the reciprocals of even divisors equals 1 (see the proof in this sequence). But, for the non-twice even perfect numbers of this sequence, for example a(5) = 60480, a(6) = 65520, a(7) = 4357080 so the sum of the reciprocals of even divisors equals 2.
Conjecture: if a(n) is a non-twice even perfect numbers, the sum of reciprocals of even divisors equals 2.

Examples

			12 is in the sequence because the divisors are {1, 2, 3, 4, 6, 12} and 1/2 + 1/4 + 1/6 + 1/12 = 1 is an integer.
67100672 is in the sequence because a(8)=A139256(5), the 5th Mersenne prime A000668(5) is 8191 = 2^13-1 and 8191*(8191+1) = 8191*8192 = 67100672.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 200000 do:x:=divisors(n):n1:=nops(x): s:=0:for i from 1 to n1 do: if irem(x[i],2)=0 then s:=s+1/x[i]:else fi:od: if s>0 and s=floor(s) then print(n):else fi:od:

Formula

a(n) = 2*A325637(n). - Amiram Eldar, Jun 26 2024

Extensions

a(17)-a(23) from Amiram Eldar, Jun 26 2024

A317306 Powers of 2 and even perfect numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 28, 32, 64, 128, 256, 496, 512, 1024, 2048, 4096, 8128, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33550336, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589869056, 8589934592
Offset: 1

Views

Author

Omar E. Pol, Aug 23 2018

Keywords

Comments

Numbers k such that the symmetric representation of sigma(k) has only one part, and apart from the central width, the rest of the widths are 1's.
Note that the above definition implies that the central width of the symmetric representation of sigma(k) is 1 or 2. For powers of 2 the central width is 1. For even perfect numbers the central width is 2 (see example).

Examples

			Illustration of initial terms:
.        _ _   _   _   _               _                       _       _
.    1  |_| | | | | | | |             | |                     | |     | |
.    2  |_ _|_| | | | | |             | |                     | |     | |
.        _ _|  _|_| | | |             | |                     | |     | |
.    4  |_ _ _|    _|_| |             | |                     | |     | |
.        _ _ _|  _|  _ _|             | |                     | |     | |
.    6  |_ _ _ _|  _|                 | |                     | |     | |
.        _ _ _ _| |                   | |                     | |     | |
.    8  |_ _ _ _ _|              _ _ _| |                     | |     | |
.                               |  _ _ _|                     | |     | |
.                              _| |                           | |     | |
.                            _|  _|                           | |     | |
.                        _ _|  _|                             | |     | |
.                       |  _ _|                               | |     | |
.                       | |                          _ _ _ _ _| |     | |
.        _ _ _ _ _ _ _ _| |                         |  _ _ _ _ _|     | |
.   16  |_ _ _ _ _ _ _ _ _|                         | |    _ _ _ _ _ _| |
.                                                _ _| |   |  _ _ _ _ _ _|
.                                            _ _|  _ _|   | |
.                                           |    _|    _ _| |
.                                          _|  _|     |  _ _|
.                                         |  _|      _| |
.                                    _ _ _| |      _|  _|
.                                   |  _ _ _|  _ _|  _|
.                                   | |       |  _ _|
.                                   | |  _ _ _| |
.                                   | | |  _ _ _|
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
.   28  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.                                       | |
.                                       | |
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.   32  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma has only one part, and apart from the central width, the rest of the widths are 1's.
A317307(n) is the area (or the number of cells) in the n-th region of the diagram.
		

Crossrefs

Union of A000079 and A000396 assuming there are no odd perfect numbers.
Subsequence of A174973.
Cf. A249351 (the widths).
Cf. A317307(n) = sigma(a(n)).

A346867 Sum of divisors of the numbers that have middle divisors.

Original entry on oeis.org

1, 3, 7, 12, 15, 13, 28, 24, 31, 39, 42, 60, 31, 56, 72, 63, 48, 91, 90, 96, 78, 124, 57, 93, 120, 120, 168, 104, 127, 144, 144, 195, 96, 186, 121, 224, 180, 234, 112, 252, 171, 156, 217, 210, 280, 216, 248, 182, 360, 133, 312, 255, 252, 336, 240, 336, 168, 403, 372, 234
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the width is >= 1.
Also the width on the main diagonal equals the number of middle divisors.
So knowing this characteristic shape we can know if a number has middle divisors (or not) and the number of them just by looking at the diagram, even ignoring the concept of middle divisors.
Therefore we can see a geometric pattern of the distribution of the numbers with middle divisors in the stepped pyramid described in A245092.
For the definition of "width" see A249351.

Examples

			a(4) = 12 because the sum of divisors of the fourth number that has middle divisors (i.e., 6) is 1 + 2 + 3 + 6 = 12.
On the other hand we can see that in the main diagonal of every diagram the width is >= 1 as shown below.
Illustration of initial terms:
m(n) = A071562(n).
.
   n   m(n) a(n)   Diagram
.                  _ _   _   _   _ _     _     _ _   _   _       _
   1    1    1    |_| | | | | | | | |   | |   | | | | | | |     | |
   2    2    3    |_ _|_| | | | | | |   | |   | | | | | | |     | |
                   _ _|  _|_| | | | |   | |   | | | | | | |     | |
   3    4    7    |_ _ _|    _|_| | |   | |   | | | | | | |     | |
                   _ _ _|  _|  _ _|_|   | |   | | | | | | |     | |
   4    6   12    |_ _ _ _|  _| |  _ _ _| |   | | | | | | |     | |
                   _ _ _ _| |_ _|_|    _ _|   | | | | | | |     | |
   5    8   15    |_ _ _ _ _|  _|     |  _ _ _|_| | | | | |     | |
   6    9   13    |_ _ _ _ _| |      _|_| |  _ _ _|_| | | |     | |
                              |  _ _|    _| |    _ _ _|_| |     | |
                   _ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|     | |
   7   12   28    |_ _ _ _ _ _ _| |_ _|  _|  _ _| |    _ _ _ _ _| |
                                  |  _ _|  _|    _|   |    _ _ _ _|
                   _ _ _ _ _ _ _ _| |     |     |  _ _|   |
   8   15   24    |_ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |
   9   16   31    |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|
                   _ _ _ _ _ _ _ _ _| | |     |      _|
  10   18   39    |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|
                   _ _ _ _ _ _ _ _ _ _| | |       |
  11   20   42    |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|
                                          | |
                                          | |
                   _ _ _ _ _ _ _ _ _ _ _ _| |
  12   24   60    |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
The n-th diagram has the property that at least it shares a vertex with the (n+1)-st diagram.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346868 (of numbers with no middle divisors).

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], Plus @@ d, 0]]; Select[Array[s, 150], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
  • PARI
    is(n) = fordiv(n, d, if(d^2>=n/2 && d^2<2*n, return(1))); 0 ; \\ A071562
    apply(sigma, select(is, [1..200])) \\ Michel Marcus, Aug 19 2021

Formula

a(n) = A000203(A071562(n)).

A256150 Oblong numbers n such that sigma(n) is a triangular number.

Original entry on oeis.org

2, 12, 56, 342, 992, 16256, 17822, 169332, 628056, 1189190, 2720850, 11085570, 35599122, 67100672, 1147210770, 1317435912, 1707135806, 7800334080, 11208986256, 13366943840, 17109032402, 17179738112, 46343540900, 58413331032, 83717924940, 204574837700, 274877382656, 445968192672, 589130699852
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

The numbers 12, 56, 992, 16256, 67100672, ... (A139256(n), twice even perfect numbers) are in the sequence because they are oblong (A139256(n) = 2^k*(2^k-1)) and sigma(A139256(n)) = sigma(2^k*(2^k-1)) = sigma(2^k)*sigma(2^k-1) = (2^(k+1)-1)*2^(k+1)/2 is a triangular number.
This sequence is the intersection of A002378 and A045746.

Examples

			2 is in the sequence because 2=1*2 is oblong, and sigma(2) = 1+2 = 3 = 2*3/2 is triangular.
		

Crossrefs

Programs

  • Mathematica
    Select[2 Accumulate[Range@10000], MemberQ[Accumulate[Range@10000], DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 17 2015 *)
  • PARI
    {for (i=1,i=10^6,n=i*(i+1);if(ispolygonal(sigma(n), 3),print(n)))}

A307741 Sum of divisors of the multiply-perfect numbers.

Original entry on oeis.org

1, 12, 56, 360, 992, 2016, 16256, 120960, 131040, 1571328, 8714160, 94279680, 67100672, 182131200, 571963392, 1379454720, 5517818880, 4428914688, 17179738112, 70912195200, 159991977600, 175445913600, 153003540480, 265734881280, 274877382656, 612014161920
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2019

Keywords

Comments

When sorted, this is A081756. - N. J. A. Sloane, May 03 2019

Examples

			For n = 3; a(3) = sigma(A007691(3)) = sigma(28) = 56.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n): n in [1..1000000] | IsIntegral(SumOfDivisors(n)/n)]
    
  • PARI
    lista(nn) = {for (n=1, nn, my(s=sigma(n)); if (! (s % n), print1(s, ", ")););} \\ Michel Marcus, Apr 26 2019

Formula

a(n) = sigma(A007691(n)) = A000203(A007691(n)).
a(n) = A007691(n) * A054030(n).

A317307 Sum of divisors of powers of 2 and sum of divisors of even perfect numbers.

Original entry on oeis.org

1, 3, 7, 12, 15, 31, 56, 63, 127, 255, 511, 992, 1023, 2047, 4095, 8191, 16256, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67100672, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179738112, 17179869183
Offset: 1

Views

Author

Omar E. Pol, Aug 25 2018

Keywords

Comments

Sum of divisors of the numbers k such that the symmetric representation of sigma(k) has only one part, and apart from the central width, the rest of the widths are 1's.
Note that the above definition implies that the central width of the symmetric representation of sigma(k) is 1 or 2. For powers of 2 the central width is 1. For even perfect numbers the central width is 2 (see example).

Examples

			Illustration of initial terms. a(n) is the area (or the number of cells) of the n-th region of the diagram:
.        _ _   _   _   _               _                       _       _
.   1   |_| | | | | | | |             | |                     | |     | |
.   3   |_ _|_| | | | | |             | |                     | |     | |
.        _ _|  _|_| | | |             | |                     | |     | |
.   7   |_ _ _|    _|_| |             | |                     | |     | |
.        _ _ _|  _|  _ _|             | |                     | |     | |
.  12   |_ _ _ _|  _|                 | |                     | |     | |
.        _ _ _ _| |                   | |                     | |     | |
.  15   |_ _ _ _ _|              _ _ _| |                     | |     | |
.                               |  _ _ _|                     | |     | |
.                              _| |                           | |     | |
.                            _|  _|                           | |     | |
.                        _ _|  _|                             | |     | |
.                       |  _ _|                               | |     | |
.                       | |                          _ _ _ _ _| |     | |
.        _ _ _ _ _ _ _ _| |                         |  _ _ _ _ _|     | |
.  31   |_ _ _ _ _ _ _ _ _|                         | |    _ _ _ _ _ _| |
.                                                _ _| |   |  _ _ _ _ _ _|
.                                            _ _|  _ _|   | |
.                                           |    _|    _ _| |
.                                          _|  _|     |  _ _|
.                                         |  _|      _| |
.                                    _ _ _| |      _|  _|
.                                   |  _ _ _|  _ _|  _|
.                                   | |       |  _ _|
.                                   | |  _ _ _| |
.                                   | | |  _ _ _|
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
.   56  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.                                       | |
.                                       | |
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.   63  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma of the numbers A317306: 1, 2, 4, 6, 8, 16, 28, 32, ..., has only one part, and apart from the central width, the rest of the widths are 1's.
		

Crossrefs

Union of nonzero terms of A000225 and A139256.
Odd terms give the nonzeros terms of A000225.
Even terms give A139256.
Subsequence of A317305.
Cf. A249351 (the widths).

Programs

  • Mathematica
    DivisorSigma[1, #] &@ Union[2^Range[0, Floor@ Log2@ Last@ #], #] &@ Array[2^(# - 1) (2^# - 1) &@ MersennePrimeExponent@ # &, 7] (* Michael De Vlieger, Aug 25 2018, after Robert G. Wilson v at A000396 *)

Formula

a(n) = A000203(A317306(n)).

A330837 a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.

Original entry on oeis.org

144, 3136, 984064, 264257536, 4502500182851584, 295143401596905324544, 75557575495813049614336, 21267647912751613342506514584526913536, 28269553036454149248812831358032474524823101898744619883661101506865659904
Offset: 1

Views

Author

Walter Kehowski, Jan 12 2020

Keywords

Comments

a(n+1) is the second element of the power-spectral basis of both A330836(n) and A330838(n). Also, a(n) = A139256(n)^2, where A139256(n) is the sum of the divisors of the n-th perfect number, A000396(n).
Also: squares of twice the perfect numbers. - M. F. Hasler, Feb 07 2020

Examples

			If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n);
      m:=2^p-1;
      return m^2*(m+1)^2;
    end:
  • Mathematica
    f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)
  • PARI
    forprime(p=1,999,isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)",")) \\ M. F. Hasler, Feb 07 2020

Formula

a(n) = A330824(n) * A133049(n).
a(n) = (2*A000396(n))^2 = (2^p-1)^2*4^p with p = A000043(n). - M. F. Hasler, Feb 07 2020

A065125 Numbers n such that the sums of the odd and even aliquot parts of n both divide n.

Original entry on oeis.org

4, 12, 56, 992, 16256, 67100672, 17179738112, 274877382656, 4611686016279904256, 5316911983139663489309385231907684352, 383123885216472214589586756168607276261994643096338432
Offset: 1

Views

Author

Joseph L. Pe, Nov 13 2001

Keywords

Comments

I call the numbers in this sequence "just numbers", since they "fairly" allow both their odd and even aliquot part sums to divide them.
Vladeta Jovovic of Belgrade University proved that every just number not equal to 4 is twice a perfect number. The proof appears in the link.

Examples

			The sum of the odd aliquot parts of 4 is 1 and the sum of the even aliquot parts of 4 is 2; both sums divide 4. The sum of the odd aliquot parts of 12 is 3 + 1 = 4 and the sum of the even aliquot parts of 12 is 6 + 4 + 2 = 12; both sums divide 12.
		

Crossrefs

{4} union 2*A000396.
Cf. A139256. [From R. J. Mathar, Nov 03 2008]

Programs

  • Mathematica
    Do[d = Drop[ Divisors[n], -1]; l = Length[d]; ev = 0; od = 1; k = 2; While[k <= l, If[ EvenQ[ d[[k]]], ev = ev + d[[k]], od = od + d[[k]]]; k++ ]; If[ IntegerQ[n/ev] && IntegerQ[n/od], Print[n]], {n, 2, 10^6, 2} ]

Extensions

More terms from Robert G. Wilson v, Oct 10 2002

A225880 Numbers that can be expressed as the product of largest odd proper divisor and the sum of odd proper divisors.

Original entry on oeis.org

12, 56, 672, 992, 11904, 16256, 55552, 195072, 666624, 910336, 10924032, 16125952, 67100672, 193511424, 805208064, 903053312, 3757637632, 10836639744, 17179738112, 45091651584, 66563866624, 206156857344, 274877382656, 798766399488, 962065334272, 1090788524032
Offset: 1

Views

Author

Antonio Roldán, May 19 2013

Keywords

Comments

The numbers a(n) can be expressed as 2^(m+n+p+...)*(2^m-1)*(2^n-1)*(2^p-1)... with 2^m-1, 2^n-1, 2^p-1 distinct Mersenne primes (A000668(n)). Example: 55552 = 2^6*7*31=2^6*(2^3-1)*(2^5-1).
This sequence is supersequence of A139256.
The number a(n) is in A139256 or a(n) is product of twice even perfect numbers A139256(n). Example: 1090788524032 = 16256*67100672 = (2*8128)*(2*33550336) = A139256(4) * A139256(5).

Examples

			11904 = 93*(93+31+3+1).
		

Crossrefs

Programs

  • PARI
    gdivodd(n)={m=n;while(m/2==m\2,m=m/2);return(m)}
    {for (n=2,2*10^8,m=gdivodd(n)*sumdiv(n, d, d*(d%2));if(m==n,print(n)))}
Previous Showing 11-20 of 28 results. Next