A141065
List of different composite numbers in Pascal-like triangles with index of asymmetry y = 1 and index of obliqueness z = 0 or z = 1.
Original entry on oeis.org
4, 12, 20, 28, 33, 46, 54, 63, 69, 88, 168, 70, 143, 161, 289, 232, 567, 594, 169, 376, 399, 817, 1194, 407, 609, 934, 1778, 1820, 2355, 408, 975, 986, 2150, 3789, 4570, 984, 1596, 2316, 4862, 5646, 7922, 8745, 985, 2367, 2583, 9849, 10801, 16281, 16532, 4180, 5667, 17091, 23585, 30923, 32948, 2378
Offset: 1
Pascal-like triangle with y = 1 and z = 0 (i.e., A140998) begins as follows:
1, so no composites.
1 1, so no composites.
1 2 1, so no composites.
1 4 2 1, so a(1) = 4.
1 7 5 2 1, so no composites.
1 12 11 5 2 1, so a(2) = 12.
1 20 23 12 5 2 1, so a(3) = 20.
1 33 46 28 12 5 2 1, so a(4) = 28, a(5) = 33, and a(6) = 46.
1 54 89 63 29 12 5 2 1, so a(7) = 54 and a(8) = 63.
1 88 168 137 69 29 12 5 2 1, so a(9) = 69, a(10) = 88, and a(11) = 168.
1 143 311 289 161 70 29 12 5 2 1, so a(12) = 70, a(13) = 143, a(14) = 161, and a(15) = 289.
1 232 567 594 367 168 70 29 12 5 2 1, so a(16) = 232, a(17) = 567, and a(18) = 594.
... [example edited by _Petros Hadjicostas_, Jun 11 2019]
Cf.
A140993 (mirror image of
A140998 with y = 1 and z = 1),
A140994 (triangle when y = 2 and z = 1),
A140995 (triangle when y = 3 and z = 1),
A140996 (triangle when y = 3 and z = 0),
A140997 (triangle when y = 2 and z = 0),
A140998 (has the above triangle with y = 1 and z = 0),
A141020,
A141021,
A141064 (has primes for y = 1),
A141066 (has composites when y = 2),
A141067 (has primes when y = 2),
A141068 (has primes when y = 3),
A141069 (has composites when y = 3).
-
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
# Construction of array A140998 (y = 1 and z = 0):
A140998 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 2, k - 1); end if; end proc;
# Construction of the current sequence:
A141065 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140998(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
# Generation of terms of the current sequence:
A141065(24);
# If one wishes to sort composites, then one may replace RETURN(a) in the above Maple code with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
Original entry on oeis.org
1, 4, 8, 16, 32, 33, 63, 124, 136, 244, 276, 480, 560, 561, 944, 1135, 1140, 1856, 2298, 2316, 3649, 4705, 7174, 9398, 9558, 9559, 14104, 18984, 19415, 27728, 38320, 39432, 39457, 54512, 77298, 80075, 80163, 107168, 155823, 162583, 162863, 162864, 210687, 313927, 330878, 414200, 632080, 669872, 814296, 1271960, 1600864
Offset: 1
Scanning rows of A141020 or A141021 and sorting new nonprimes into the list we get:
1 yields a(1) = 1.
1 1 yields no new member.
1 2 1 yields no new member.
1 4 2 1 yields a(2) = 4.
1 8 4 2 1 yields a(3) = 8.
1 16 8 4 2 1 yields a(4) = 16.
1 32 16 8 4 2 1 yields a(5) = 32.
1 63 33 16 8 4 2 1 yields a(6) = 33 and a(7) = 63.
1 124 67 33 16 8 4 2 1 yields a(8) = 124.
1 244 136 67 33 16 8 4 2 1 yields a(9) = 136 and a(10) = 244.
1 480 276 136 67 33 16 8 4 2 1 yields a(11) = 276 and a(12) = 480.
1 944 560 276 136 67 33 16 8 4 2 1 yields a(13) = 560 and a(14) = 944.
...
From _Petros Hadjicostas_, Jun 22 2019: (Start)
In the above example, we only sort the nonprimes up to row 11; we get the same output from _R. J. Mathar_'s program below if we say A141031(11). If, however, we include more rows in the program, the indexing of the nonprimes changes.
For example, the nonprimes in the data above come from the nonprimes of 22 rows. If we include more rows, then the indexing again changes and the value of each a(n) may not stay the same.
(End)
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141020,
A141021,
A141064,
A141065,
A141066,
A141067,
A141068,
A141069.
-
A141020 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; elif k=n-4 then 16 ; else procname(n-1,k)+procname(n-2,k)+procname(n-3,k)+procname(n-4,k) +procname(n-5,k)+procname(n-5,k-1) ; fi; end:
A141031 := proc(nmax) local a,n,k ; a := [] ; for n from 0 to nmax do for k from 0 to n do a141020 := A141020(n,k) ; if not isprime(a141020) and not a141020 in a then a := [op(a),a141020] ; fi; od: od: RETURN(sort(a)) ; end: A141031(30) ; # R. J. Mathar, Sep 19 2008
Simplified definition, corrected values by
R. J. Mathar, Sep 19 2008
A001949
Solutions of a fifth-order probability difference equation.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 63, 124, 244, 480, 944, 1856, 3649, 7174, 14104, 27728, 54512, 107168, 210687, 414200, 814296, 1600864, 3147216, 6187264, 12163841, 23913482, 47012668, 92424472, 181701728, 357216192, 702268543, 1380623604, 2714234540
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see pp. 356 and 369.
- T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011), Article #11.4.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,-1)
Column k = 1 of
A141020 (with a different offset) and second main diagonal of
A141021 (with no zeros).
-
A001949:=1/(z-1)/(z**5+z**4+z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation
-
t={0,0,0,0,0};Do[AppendTo[t,t[[-5]]+t[[-4]]+t[[-3]]+t[[-2]]+t[[-1]]+1],{n,40}];t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
LinearRecurrence[{2,0,0,0,0,-1},{0,0,0,0,0,1},40] (* Harvey P. Dale, Jan 17 2015 *)
-
a(n):=sum(sum((-1)^j*binomial(n-5*j-5,k-1)*binomial(n-k-5*j-4,j),j,0,(n-k-4)/5),k,1,n-4); /* Vladimir Kruchinin, Oct 19 2011 */
-
x='x+O('x^99); concat(vector(5), Vec(x^5/((x-1)*(x^5+x^4+x^3+x^2+x-1)))) \\ Altug Alkan, Oct 04 2017
A141069
List of different composites in Pascal-like triangles with index of asymmetry y = 3 and index of obliqueness z = 0 or z = 1.
Original entry on oeis.org
4, 8, 16, 35, 60, 72, 116, 148, 224, 303, 432, 308, 618, 833, 636, 1257, 1606, 1313, 2550, 3096, 1314, 2709, 5160, 5968, 2715, 5584, 10418, 11504, 5609, 11499, 20991, 22175, 23655, 42215, 42744, 11588, 23934, 48607, 82392, 84752, 23941, 99763, 158816, 169880
Offset: 1
Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:
1, so no composites.
1 1, so no composites.
1 2 1, so no composites.
1 4 2 1, so a(1) = 4.
1 8 4 2 1, so a(2) = 8.
1 16 8 4 2 1, so a(3) = 16.
1 31 17 8 4 2 1, so no new composites.
1 60 35 17 8 4 2 1, so a(4) = 35 and a(5) = 60.
1 116 72 35 17 8 4 2 1, so a(6) = 72 and a(7) = 116.
1 224 148 72 35 17 8 4 2 1, so a(8) = 148 and a(9) = 224.
1 432 303 149 72 35 17 8 4 2 1, so a(10) = 303 and a(11) = 432.
... [edited by _Petros Hadjicostas_, Jun 13 2019]
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141020,
A141021,
A141031,
A141064,
A141065,
A141066,
A141067,
A141069,
A141070,
A141072,
A141073.
-
# This is a modification of R. J. Mathar's program from sequence A141031 (for the case y = 4 and z = 0).
# Definition of sequence A140996 (y = 3 and z = 0):
A140996 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; elif k = n - 3 then 8; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 4, k) + procname(n - 4, k - 1); end if; end proc;
# Definition of current sequence:
A141069 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140996(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
# Generation of current sequence until row n = 30:
A141069(30);
# If one wishes the composites to be sorted, then replace RETURN(a) with RETURN(sort(a)) in the above Maple code. In such a case, however, the output may not necessarily be uniquely defined (because it changes with the value of n). - Petros Hadjicostas, Jun 15 2019
A141068
List of different primes in Pascal-like triangles with index of asymmetry y = 3 and index of obliquity z = 0 or z = 1.
Original entry on oeis.org
2, 17, 31, 149, 11587, 49429, 15701951, 21304973, 3846277, 251375273, 5449276159, 296410704409, 750391353973, 205109154121, 875366796349, 72210869205443, 139884035510017, 79014319582741129, 94461530406533783, 2562508045902551
Offset: 1
Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:
1, so no primes.
1 1, so no primes
1 2 1, so a(1) = 2.
1 4 2 1, so no new primes.
1 8 4 2 1, so no new primes.
1 16 8 4 2 1, so new primes.
1 31 17 8 4 2 1, so a(2) = 17 and a(3) = 31.
1 60 35 17 8 4 2 1, so no new primes.
1 116 72 35 17 8 4 2 1, so no new primes.
1 224 148 72 35 17 8 4 2 1, so new primes.
1 432 303 149 72 35 17 8 4 2 1, so a(4) = 149.
...
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141020,
A141021,
A141031,
A141064,
A141065,
A141066,
A141067,
A141069,
A141070,
A141072,
A141073.
-
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
# Definition of sequence A140996 (y = 3 and z = 0):
A140996 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; elif k = n - 3 then 8; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 4, k) + procname(n - 4, k - 1); end if; end proc;
# Definition of the current sequence:
A141068 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140996(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
# Generation of the current sequence:
A141068(80);
# If one wishes to get the primes sorted (as R. J. Mathar does in A141031), then replace RETURN(a) in the code above with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
A141064
List of different primes in Pascal-like triangles with index of asymmetry y = 1 and index of obliquity z = 0 or z = 1.
Original entry on oeis.org
2, 5, 7, 11, 23, 29, 89, 137, 311, 367, 1021, 3217, 5441, 2377, 12619, 65761, 5741, 144593, 13859, 78511, 1462397, 33461, 469957, 2552939, 11096497, 5930669, 6343133, 26512597, 470831, 127626137, 372222703, 15955507, 538270693, 531077333, 11401285549, 38613943, 15433507333, 92554537183, 113828092793
Offset: 1
Pascal-like triangle with y = 1 and z = 0 (i.e, A140998) begins as follows:
1, so no prime.
1 1, so no primes.
1 2 1, so a(1) = 2.
1 4 2 1, so no new primes.
1 7 5 2 1, so a(2) = 5 and a(3) = 7.
1 12 11 5 2 1, so a(4) = 11.
1 20 23 12 5 2 1, so a(5) = 23.
1 33 46 28 12 5 2 1, so no new primes.
1 54 89 63 29 12 5 2 1, so a(6) = 29 and a(7) = 89.
1 88 168 137 69 29 12 5 2 1, so a(8) = 137.
1 143 311 289 161 70 29 12 5 2 1, so a(9) = 311.
1 232 567 594 367 168 70 29 12 5 2 1, so a(10) = 367.
...
[edited by _Petros Hadjicostas_, Jun 11 2019]
Cf.
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141021,
A141022,
A141031,
A141066,
A141067.
-
# This is a modification R. J. Mathar's program from A141031 (for the case y = 4 and z = 0).
# Construct array A140998 (y = 1 and z = 0):
A140998 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 2, k - 1); end if; end proc;
# Construct the current sequence:
A141064 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140998(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
# Generate terms of the current sequence:
A141064(38);
# If one wants to get the primes sorted, then replace RETURN(a) in the Maple code above with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
A141018
a(n) is the largest number in the n-th row of triangle A140997.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 28, 52, 96, 177, 345, 694, 1386, 2751, 5431, 10672, 20885, 40724, 79153, 153402, 296528, 571845, 1129293, 2264749, 4527029, 9021498, 17926740, 35527082, 70230422, 138504765, 272545323, 535184340, 1048842743, 2051669285, 4006253136, 7954830148
Offset: 0
The largest number of 1 is a(0) = 1.
The largest number of 1 1 is a(1) = 1.
The largest number of 1 2 1 is a(2) = 2.
The largest number of 1 4 2 1 is a(3) = 4.
The largest number of 1 8 4 2 1 is a(4) = 8.
The largest number of 1 15 9 4 2 1 is a(5) = 15.
The largest number of 1 28 19 9 4 2 1 is a(6) = 28.
The largest number of 1 52 40 19 9 4 2 1 is a(7) = 52.
-
A140997 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; else procname(n-1,k)+procname(n-2,k)+procname(n-3,k)+procname(n-3,k-1) ; fi; end:
A141018 := proc(n) max(seq(A140997(n,k),k=0..n)) ; end: for n from 0 to 60 do printf("%d,",A141018(n)) ; od: # R. J. Mathar, Sep 19 2008
-
T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n-1, 2, k == n-2, 4, True, T[n-1, k]+T[n-2, k]+T[n-3, k]+T[n-3, k-1]];
a[n_] := Max[Table[T[n, k], {k, 0, n}]];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 18 2023, after R. J. Mathar *)
Simplified definition, corrected from a(12) on and extended by
R. J. Mathar, Sep 19 2008
A309462
Limiting row sequence for Pascal-like triangle A140995 (Stepan's triangle with index of asymmetry s = 3).
Original entry on oeis.org
1, 2, 4, 8, 17, 35, 72, 149, 308, 636, 1314, 2715, 5609, 11588, 23941, 49462, 102188, 211120, 436173, 901131, 1861732, 3846329, 7946496, 16417420, 33918306, 70075047, 144774689, 299103768, 617946857, 1276675050, 2637604132, 5449276664, 11258177753, 23259337731
Offset: 0
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141020,
A141021,
A141031,
A141065,
A141066,
A141067,
A141068,
A141069,
A141070,
A141072,
A141073,
A308808.
A141019
a(n) is the largest number in the n-th row of triangle A140996.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 84752, 169880, 340013, 679604, 1356641, 2704954, 5387340, 10718620, 21304973, 42308331, 83945336, 166423276, 329683867, 652627294, 1291020297, 2552209710, 5042305104
Offset: 0
The largest number of 1 is a(0) = 1.
The largest number of 1 1 is a(1) = 1.
The largest number of 1 2 1 is a(2) = 2.
The largest number of 1 4 2 1 is a(3) = 4.
The largest number of 1 8 4 2 1 is a(4) = 8.
The largest number of 1 16 8 4 2 1 is a(5) = 16.
The largest number of 1 31 17 8 4 2 1 is a(6) = 31.
-
A140996 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; else procname(n-1,k)+procname(n-2,k) +procname(n-3,k)+procname(n-4,k)+procname(n-4,k-1) ; fi; end:
A141019 := proc(n) max(seq(A140996(n,k),k=0..n)) ; end: for n from 0 to 50 do printf("%d,",A141019(n)) ; od: # R. J. Mathar, Sep 19 2008
-
T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n - 1, 2, k == n-2, 4, k == n-3, 8, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-4, k-1]];
a[n_] := Table[T[n, k], {k, 0, n}] // Max;
Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jan 28 2024, after R. J. Mathar *)
Simplified definition and extended by
R. J. Mathar, Sep 19 2008
Comments