A218131
Number of length 8 primitive (=aperiodic or period 8) n-ary words.
Original entry on oeis.org
0, 0, 240, 6480, 65280, 390000, 1678320, 5762400, 16773120, 43040160, 99990000, 214344240, 429960960, 815702160, 1475750640, 2562840000, 4294901760, 6975673920, 11019855600, 16983432720, 25599840000, 37822664880, 54875639280, 78310705440, 110074982400
Offset: 0
-
a:= n-> (n^4-1)*n^4:
seq(a(n), n=0..30);
-
Table[n^8 - n^4, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 30 2017 *)
A252764
Number of length n primitive (=aperiodic or period n) n-ary words.
Original entry on oeis.org
1, 2, 24, 240, 3120, 46410, 823536, 16773120, 387419760, 9999899910, 285311670600, 8916097441680, 302875106592240, 11112006720144330, 437893890380096640, 18446744069414584320, 827240261886336764160, 39346408075098144278664, 1978419655660313589123960
Offset: 1
a(3) = 24 because there are 24 primitive words of length 3 over 3-letter alphabet {a,b,c}: aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb.
-
with(numtheory):
a:= n-> add(n^d *mobius(n/d), d=divisors(n)):
seq(a(n), n=1..25);
-
a[n_] := DivisorSum[n, n^# * MoebiusMu[n/#]& ];
Array[a, 25] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
A320071
Number of length n primitive (=aperiodic or period n) 6-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 5, 35, 210, 1295, 7735, 46655, 279720, 1679580, 10076395, 60466175, 362789070, 2176782335, 13060647355, 78364162765, 470184704640, 2821109907455, 16926657757380, 101559956668415, 609359729932590, 3656158440016285, 21936950579911675, 131621703842267135
Offset: 1
-
a:= n-> add(`if`(d=n, 6^(n-1), -a(d)), d=numtheory[divisors](n)):
seq(a(n), n=1..25);
-
nmax = 20; Rest[CoefficientList[Series[Sum[MoebiusMu[k] * x^k / (1 - 6*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
A320072
Number of length n primitive (=aperiodic or period n) 7-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 6, 48, 336, 2400, 16752, 117648, 823200, 5764752, 40351200, 282475248, 1977309600, 13841287200, 96888892752, 678223070400, 4747560686400, 33232930569600, 232630508205648, 1628413597910448, 11398895145019200, 79792266297494304, 558545863800808752
Offset: 1
-
a:= n-> add(`if`(d=n, 7^(n-1), -a(d)), d=numtheory[divisors](n)):
seq(a(n), n=1..25);
A320073
Number of length n primitive (=aperiodic or period n) 8-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 7, 63, 504, 4095, 32697, 262143, 2096640, 16777152, 134213625, 1073741823, 8589901320, 68719476735, 549755551737, 4398046506945, 35184369991680, 281474976710655, 2251799796875328, 18014398509481983, 144115187941637640, 1152921504606584769
Offset: 1
-
a:= n-> add(`if`(d=n, 8^(n-1), -a(d)), d=numtheory[divisors](n)):
seq(a(n), n=1..25);
A320074
Number of length n primitive (=aperiodic or period n) 9-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 8, 80, 720, 6560, 58960, 531440, 4782240, 43046640, 387413920, 3486784400, 31380999840, 282429536480, 2541865296880, 22876792448320, 205891127311680, 1853020188851840, 16677181656560880, 150094635296999120, 1350851717285570880, 12157665459056397280
Offset: 1
-
a:= n-> add(`if`(d=n, 9^(n-1), -a(d)), d=numtheory[divisors](n)):
seq(a(n), n=1..25);
A218124
Number of 7-ary sequences with primitive period n.
Original entry on oeis.org
1, 7, 42, 336, 2352, 16800, 117264, 823536, 5762400, 40353264, 282458400, 1977326736, 13841167200, 96889010400, 678222249264, 4747561492800, 33232924804800, 232630513987200, 1628413557439536, 11398895185373136, 79792266015134400, 558545864082460128
Offset: 0
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(7^d *mobius(n/d), d=divisors(n))):
seq(a(n), n=0..30);
A218125
Number of 8-ary sequences with primitive period n.
Original entry on oeis.org
1, 8, 56, 504, 4032, 32760, 261576, 2097144, 16773120, 134217216, 1073709000, 8589934584, 68719210560, 549755813880, 4398044413896, 35184372055560, 281474959933440, 2251799813685240, 18014398375002624, 144115188075855864, 1152921503533101120
Offset: 0
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(8^d*mobius(n/d), d=divisors(n))):
seq(a(n), n=0..30);
A218130
Number of length 6 primitive (=aperiodic or period 6) n-ary words.
Original entry on oeis.org
0, 0, 54, 696, 4020, 15480, 46410, 117264, 261576, 530640, 998910, 1770120, 2984124, 4824456, 7526610, 11387040, 16772880, 24132384, 34006086, 47038680, 63991620, 85756440, 113368794, 148023216, 191088600, 244124400, 308897550, 387400104, 481867596, 594798120
Offset: 0
-
a:= n-> (((n^3-1)*n-1)*n+1)*n:
seq(a(n), n=0..30);
-
Table[n^6-n^3-n^2+n,{n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,54,696,4020,15480,46410},30] (* Harvey P. Dale, Oct 13 2017 *)
A320075
Number of length n primitive (=aperiodic or period n) 10-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 9, 99, 990, 9999, 99891, 999999, 9999000, 99999900, 999989991, 9999999999, 99999899010, 999999999999, 9999998999991, 99999999989901, 999999990000000, 9999999999999999, 99999999899900100, 999999999999999999, 9999999998999999010, 99999999999998999901
Offset: 1
-
a:= n-> add(`if`(d=n, 10^(n-1), -a(d)), d=numtheory[divisors](n)):
seq(a(n), n=1..25);
Previous
Showing 11-20 of 26 results.
Next
Comments