cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A375073 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no other exponents.

Original entry on oeis.org

72, 108, 200, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 1800, 2312, 2700, 2888, 3087, 3267, 3528, 4232, 4500, 4563, 5292, 5324, 5400, 6125, 6728, 7688, 7803, 8575, 8712, 8788, 9000, 9747, 9800, 10584, 10952, 11979, 12168, 12348, 13068, 13448, 13500, 14283, 14792
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {2, 3}.
Number k such that A051904(k) = 2 and A051903(k) = 3.

Crossrefs

Equals A338325 \ (A062503 UNION A062838).
Subsequence of A001694 and A046100.
A143610 is a subsequence.

Programs

  • Mathematica
    Select[Range[15000], Union[FactorInteger[#][[;; , 2]]] == {2, 3} &]
  • PARI
    is(k) = Set(factor(k)[,2]) == [2, 3];

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^2 + 1/p^3) - 15/Pi^2 - zeta(3)/zeta(6) + 1 = A330595 - A082020 - A157289 + 1 = 0.047550294197921818806... .

A336530 Number of triples of divisors d_i < d_j < d_k of n such that gcd(d_i, d_j, d_k) > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 4, 0, 5, 0, 5, 0, 0, 0, 23, 0, 0, 1, 5, 0, 12, 0, 10, 0, 0, 0, 36, 0, 0, 0, 23, 0, 12, 0, 5, 5, 0, 0, 62, 0, 5, 0, 5, 0, 23, 0, 23, 0, 0, 0, 87, 0, 0, 5, 20, 0, 12, 0, 5, 0, 12, 0, 120, 0, 0, 5, 5, 0, 12, 0, 62, 4
Offset: 1

Views

Author

Michel Lagneau, Oct 04 2020

Keywords

Comments

Number of elements in the set {(x, y, z): x|n, y|n, z|n, x < y < z, GCD(x, y, z) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n) = 0 for n = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, ... (Numbers with at most 2 prime factors (counted with multiplicity). See A037143);
a(n) = 1 for n = 8, 27, 125, 343, 1331, 2197, 4913,... (cubes of primes. See A030078);
a(n) = 4 for n = 16, 81, 625, 2401, 14641, 28561, ... (prime(n)^4. See A030514);
a(n) = 5 for n = 12, 18, 20, 28, 44, 45, ... (Numbers which are the product of a prime and the square of a different prime (p^2 * q). See A054753);
a(n) = 12 for n = 30, 42, 66, 70, 78, 102, 105, 110,... (Sphenic numbers: products of 3 distinct primes. See A007304);
a(n) = 20 for n = 64, 729, 15625, 117649, ... (Numbers with 7 divisors. 6th powers of primes. See A030516);
a(n) = 23 for n = 24, 40, 54, 56, 88, 104, 135, 136, ... (Product of the cube of a prime (A030078) and a different prime. See A065036);
a(n) = 36 for n = 36, 100, 196, 225, 441, 484, 676,... (Squares of the squarefree semiprimes (p^2*q^2). See A085986);
a(n) = 62 for n = 48, 80, 112, 162, 176, 208, 272, ... (Product of the 4th power of a prime (A030514) and a different prime (p^4*q). See A178739);
a(n) = 87 for n = 60, 84, 90, 126, 132, 140, 150, 156, ... (Product of exactly four primes, three of which are distinct (p^2*q*r). See A085987);
a(n) = 120 for n = 72, 108, 200, 392, 500, 675, 968, ... (Numbers of the form p^2*q^3, where p,q are distinct primes. See A143610);
It is possible to continue with a(n) = 130, 235, 284, 289, 356, ...

Examples

			a(12) = 5 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j, d_k) > 1 for the 5 following triples of divisors: (2,4,6), (2,4,12), (2,6,12), (3,6,12) and (4,6,12).
		

Crossrefs

Cf. A275387.

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    it:=0:d:=divisors(n):n0:=nops(d):
      for i from 1 to n0-2 do:
       for j from i+1 to n0-1 do:
         for k from j+1 to n0 do:
        if igcd(d[i],d[j],d[k])> 1
           then
           it:=it+1:
           else
          fi:
         od:
         od:
         od:
        printf(`%d, `,it):
       od:
  • Mathematica
    Array[Count[GCD @@ # & /@ Subsets[Divisors[#], {3}], ?(# > 1 &)] &, 81] (* _Michael De Vlieger, Oct 05 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, #d-2, sum (j=i+1, #d-1, sum (k=j+1, #d, gcd([d[i], d[j], d[k]]) > 1))); \\ Michel Marcus, Oct 31 2020
    
  • PARI
    a(n) = {my(f = factor(n), vp = vecprod(f[,1]), d = divisors(vp), res = 0);
    for(i = 2, #d, res-=binomial(numdiv(n/d[i]), 3)*(-1)^omega(d[i])); res} \\ David A. Corneth, Nov 01 2020

Extensions

Name clarified by editors, Oct 31 2020

A381315 Numbers whose prime factorization exponents include exactly one 3 and no exponent greater than 3.

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584, 594
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Subsequence of A176297 and A375072, and first differs from them at n = 20: A176297(20) = A375072(20) = 216 = 2^3 * 3^3 is not a term of this sequence.
The asymptotic density of this sequence is (1/zeta(3)) * Sum_{p prime} 1/(p+p^2+p^3) = 0.089602607198058453295... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, MemberQ[e, 3] && Count[e, _?(# < 3 &)] == Length[e] - 1]; Select[Range[600], q]
  • PARI
    isok(k) = {my(e = factor(k)[, 2]~); select(x -> x > 2, e) == [3];}

A382292 Numbers k such that A382290(k) = 1.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 64, 72, 88, 96, 104, 108, 120, 125, 135, 136, 152, 160, 168, 184, 189, 192, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 320, 328, 343, 344, 351, 352, 360, 375, 376, 378, 392, 408, 416, 424, 432, 440, 448, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

First differs from A374590 and A375432 at n = 25: A374590(25) = A375432(25) = 216 is not a term of this sequence.
Numbers k such that A382291(k) = 2, i.e., numbers whose number of infinitary divisors is twice the number of their unitary divisors.
Numbers whose prime factorization has a single exponent that is a sum of two distinct powers of 2 (A018900) and all the other exponents, if they exist, are powers of 2. Equivalently, numbers of the form p^e * m, where p is a prime, e is a term in A018900, and m is a term in A138302 that is coprime to p.
If k is a term then k^2 is also a term. If m is a term in A138302 that is coprime to k then k * m is also a term. The primitive terms, i.e., the terms that cannot be generated from smaller terms using these rules, are the numbers of the form p^(2^i+1), where p is prime and i >= 1.
Analogous to A060687, which is the sequence of numbers k with prime excess A046660(k) = 2.
The asymptotic density of this sequence is A271727 * Sum_{p prime} (((1 - 1/p)/f(1/p)) * Sum_{k>=1} 1/p^A018900(k)) = 0.11919967112489084407..., where f(x) = 1 - x^3 + Sum_{k>=2} (x^(2^k)-x^(2^k+1)).

Crossrefs

Subsequences (numbers of the form): A030078 (p^3), A050997 (p^5), A030516 (p^6), A179665 (p^9), A030629 (p^10), A030631 (p^12), A065036 (p^3*q), A178740 (p^5*q), A189987 (p^6*q), A179692 (p^9*q), A143610 (p^2*q^3), A179646 (p^5*q^2), A189990 (p^2*q^6), A179702 (p^4*q^5), A179666 (p^4*q^3), A190464 (p^4*q^6), A163569 (p^3*q^2*r), A189975 (p*q*r^3), A190115 (p^2*q^3*r^4), A381315, A048109.

Programs

  • Mathematica
    f[p_, e_] := DigitCount[e, 2, 1] - 1; q[1] = False; q[n_] := Plus @@ f @@@ FactorInteger[n] == 1; Select[Range[500], q]
  • PARI
    isok(k) = vecsum(apply(x -> hammingweight(x) - 1, factor(k)[, 2])) == 1;

A203662 Achilles number whose largest proper divisor is also an Achilles number.

Original entry on oeis.org

864, 1944, 3888, 4000, 5400, 6912, 9000, 10584, 10800, 10976, 17496, 18000, 21168, 21600, 24696, 25000, 26136, 30375, 31104, 32000, 34992, 36000, 36504, 42336, 42592, 43200, 48600, 49000, 49392, 50000, 52272, 55296, 62208, 62424, 68600, 69984
Offset: 1

Views

Author

Antonio Roldán, Jan 04 2012

Keywords

Comments

Exponent of smallest prime divisor of n is greater than or equal to 3.
Both N and the largest proper divisor of N share the same prime factors with different exponents.

Examples

			17496 is in the sequence because 17496=2^3*3^7 (Achilles number) and the largest proper divisor 8748=2^2*3^7 is also an Achilles number.
		

Crossrefs

Programs

  • Mathematica
    (* First run the program for A052486 to define achillesQ *) Select[Range[50000], achillesQ[#] && achillesQ[Divisors[#][[-2]]] &] (* Alonso del Arte, Jan 05 2012 *)
  • Python
    # uses program in A052486
    from itertools import count, islice
    from math import gcd
    from sympy import factorint
    def A203662_gen(): # generator of terms
        def g(x):
            (f:=factorint(x))[min(f)]-=1
            return (x,f.values())
        return map(lambda x:x[0],filter(lambda x:all(d>1 for d in x[1]) and gcd(*x[1])==1,map(g,(A052486(i) for i in count(1)))))
    A203662_list = list(islice(A204662_gen(),20)) # Chai Wah Wu, Sep 10 2024

A216426 Numbers of the form a^2*b^3, where a != b and a, b > 1.

Original entry on oeis.org

72, 108, 128, 200, 256, 288, 392, 432, 500, 512, 576, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1944, 2000, 2048, 2187, 2304, 2312, 2592, 2700, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3872, 3888, 4000
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

Terms of A216427 that are not 5th powers of squarefree numbers (A113850) and not 10th powers of primes (A030629). - Amiram Eldar, Feb 07 2023

Crossrefs

Cf. A143610.
Subsequence of A216427. - Zak Seidov, Jan 03 2014

Programs

  • Mathematica
    With[{upto=4000},Select[Union[Flatten[{#[[1]]^2 #[[2]]^3,#[[2]]^2 #[[1]]^3}& /@ Subsets[Range[2,Surd[upto,2]],{2}]]],#<=upto&]](* Harvey P. Dale, Jan 04 2014 *)
    pMx = 25; mx = 2^3 pMx^2; t = Flatten[Table[If[a != b, a^2 b^3, 0], {a, 2, mx^(1/2)}, {b, 2, mx^(1/3)}]]; Union[Select[t, 0 < # <= mx &]] (* T. D. Noe, Jan 02 2014 *)
  • PARI
    list(lim)=my(v=List()); for(b=2, sqrtnint(lim\4,3), for(a=2, sqrtint(lim\b^3), if(a!=b, listput(v, a^2*b^3)))); Set(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius, primepi
    def A216426(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j, b, a, d = isqrt(x), integer_nthroot(x,6)[0], integer_nthroot(x,5)[0], integer_nthroot(x,10)[0]
            l, c = 0, n+x-2+primepi(b)+sum(mobius(k)*(j//k**3) for k in range(d+1, b+1))+primepi(d)+sum(mobius(k)*(a//k**2+j//k**3) for k in range(1, d+1))
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = sum(mobius(k)*((k2-1)//k**2) for k in range(1, isqrt(k2-1)+1))
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n) = 2 + ((zeta(2)-1)*(zeta(3)-1)-1)/zeta(6) - zeta(5)/zeta(10) - P(6) - P(10) = 0.09117811499514578262..., where P(s) is the prime zeta function. - Amiram Eldar, Feb 07 2023

Extensions

Name corrected by Charles R Greathouse IV, Jan 02 2014

A272191 Either 8th power of a prime, or product of a square and a cube of two different primes.

Original entry on oeis.org

72, 108, 200, 256, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, 2888, 3087, 3267, 4232, 4563, 5324, 6125, 6561, 6728, 7688, 7803, 8575, 8788, 9747, 10952, 11979, 13448, 14283, 14792, 15125, 17672, 19652, 19773, 21125, 22472, 22707, 25947, 27436, 27848, 29768
Offset: 1

Views

Author

Paolo P. Lava, Apr 22 2016

Keywords

Comments

Numbers such that the sum of the number of divisors of their aliquot parts is four times the number of their divisors.

Examples

			72 = 2^3 * 3^2;  256 = 2^8.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;  for n from 2 to q do a:=sort([op(divisors(n))]);
    if 4*tau(n)= add(tau(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^7);
  • Mathematica
    Select[Range[30000], MemberQ[{{8}, {2, 3}}, Sort[FactorInteger[#][[;; , 2]]]] &] (* Amiram Eldar, Oct 03 2023 *)
  • PARI
    isok(n) = 4*numdiv(n) == sumdiv(n, d, (n!=d)*numdiv(d)); \\ Michel Marcus, Apr 22 2016
    
  • PARI
    is(n) = {my(e = vecsort(factor(n)[, 2])~); e == [8] || e == [2, 3];} \\ Amiram Eldar, Oct 03 2023

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3) - P(5) + P(8) = A085548 * A085541 - A085965 + A085968 = 0.047342..., where P is the prime zeta function. - Amiram Eldar, Oct 03 2023

A275345 Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.

Original entry on oeis.org

1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0

Views

Author

Mats Granvik, Jul 24 2016

Keywords

Comments

From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.

Examples

			{
{ 1},
{ 1, -1},
{-1, -1,  1},
{-1,  0,  2,  -1},
{ 0,  0,  2,  -3,  1},
{-1,  2,  1,  -5,  4,   -1},
{ 1, -3,  5,  -8,  9,   -5,   1},
{-1,  4, -4,  -5, 15,  -14,   6,  -1},
{ 0, -1,  6, -17, 29,  -31,  20,  -7,  1},
{ 0,  0,  2, -13, 36,  -55,  50, -27,  8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
		

Crossrefs

Programs

  • Mathematica
    Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]

A376249 Numbers that are not prime powers and have a unique largest prime exponent that is larger than the second-largest prime exponent by 1.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268, 275, 276, 279, 284, 292, 294
Offset: 1

Views

Author

Amiram Eldar, Sep 16 2024

Keywords

Comments

First differs from A325241 at n = 36: A325241(36) = 2^2 * 3^2 * 5 is not a term of this sequence. Also, a(71) = 360 = 2^3 * 3^2 * 5 is the least term that is not a term of A325241.
Numbers whose unordered prime signature (i.e., sorted, see A118914) ends with two consecutive integers: {..., k, k+1} for some k >= 1.
The asymptotic density of this sequence is Sum_{k >= 1, p prime} (d(k+1, p) - d(k, p))/p^(k+1) = 0.21831645263800520483..., where d(k, p) = 0 for k = 1, and (1-1/p)/((1-1/p^k)*zeta(k)) for k > 1, is the density of terms that have in their prime factorization a prime p with the largest exponent that is > k.

Crossrefs

Subsequence of A356862.

Programs

  • Mathematica
    q[k_] := Module[{e = Sort[FactorInteger[k][[;; , 2]]]}, Length[e] > 1 && e[[-1]] == e[[-2]] + 1]; Select[Range[300], q]
  • PARI
    is(k) = {my(e = vecsort(factor(k)[, 2])); #e > 1 && e[#e] == e[#e-1] + 1;}

A377844 Numbers that have a single odd exponent larger than 1 in their prime factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A295661, A325990 and A376142 at n = 24: A295661(24) = A325990(24) = A376142(24) = 216 = 2^3 * 3^3 is not a term of this sequence.
Differs from A060476 by having the terms 432, 648, 1728, ..., and not having the terms 1, 216, 256, 768, 864, ... .
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) * Sum_{p prime} (1/(p^3+p^2-1)) = 0.11498368544519741081... .

Crossrefs

Subsequence of A295661.
Subsequences: A065036, A143610, A163569.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] == 1; Select[Range[500], q]
  • PARI
    is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) == 1;
Previous Showing 11-20 of 28 results. Next