cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A179059 Number of non-attacking placements of 4 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 24, 600, 5400, 29400, 117600, 381024, 1058400, 2613600, 5880600, 12269400, 24048024, 44717400, 79497600, 135945600, 224726400, 360561024, 563376600, 859685400, 1284221400, 1881864600, 2709885024, 3840540000, 5364060000
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=4 of A144084.
Cf. A179058 (3 rooks), A179060 (5 rooks).

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,0,24,600,5400,29400,117600,381024},40] (* Harvey P. Dale, Feb 19 2013 *)
    a[n_] := If[n<4, 0, Coefficient[n!*LaguerreL[n, x], x, n-4] // Abs];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
  • PARI
    a(n) = 4! * binomial(n, 4)^2; \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 4! * binomial(n, 4)^2.
From Colin Barker, Jan 08 2013: (Start)
a(n) = (n^2*(-6+11*n-6*n^2+n^3)^2)/24.
G.f.: -24*x^4*(x^4 +16*x^3 +36*x^2 +16*x +1) / (x -1)^9.
(End)
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=4} 1/a(n) = (20*Pi^2 - 197)/9.
Sum_{n>=4} (-1)^n/a(n) = (64*log(2) - 44)/9. (End)

A179060 Number of non-attacking placements of 5 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 120, 4320, 52920, 376320, 1905120, 7620480, 25613280, 75271680, 198764280, 480960480, 1082161080, 2289530880, 4594961280, 8809274880, 16225246080, 28844881920, 49689816120, 83217546720, 135870624120
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=5 of A144084.
Cf. A179059 (4 rooks), A179061 (6 rooks).

Programs

  • Mathematica
    a[n_] := If[n<5, 0, Coefficient[n!*LaguerreL[n, x], x, n-5] // Abs];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
  • PARI
    a(n) = 5! * binomial(n, 5)^2 \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 5! * binomial(n, 5)^2.
G.f.: -120*x^5*(x+1)*(x^4+24*x^3+76*x^2+24*x+1) / (x-1)^11. - Colin Barker, Jan 08 2013

A179061 Number of non-attacking placements of 6 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 720, 35280, 564480, 5080320, 31752000, 153679680, 614718720, 2120152320, 6492966480, 18036018000, 46172206080, 110279070720, 248127909120, 530024705280, 1081683072000, 2120098821120, 4008311833680
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=5 of A144084.
Cf. A179060 (5 rooks), A179062 (7 rooks).

Programs

Formula

a(n) = 6! * binomial(n, 6)^2.
G.f.: -720*x^6*(x^6+36*x^5+225*x^4+400*x^3+225*x^2+36*x+1) / (x-1)^13. - Colin Barker, Jan 08 2013

A179062 Number of non-attacking placements of 7 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 5040, 322560, 6531840, 72576000, 548856000, 3161410560, 14841066240, 59364264960, 208702494000, 659602944000, 1906252508160, 5104345559040, 12796310741760, 30287126016000, 68146033536000
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=7 of A144084.
Cf. A179061 (6 rooks), A179063 (8 rooks).

Programs

  • Mathematica
    7! Binomial[Range[30],7]^2 (* or *) LinearRecurrence[{15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1},{0,0,0,0,0,0,5040,322560,6531840,72576000,548856000,3161410560,14841066240,59364264960,208702494000},30] (* Harvey P. Dale, May 25 2017 *)
  • PARI
    a(n) = 7! * binomial(n, 7)^2 \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 7!*binomial(n,7)^2.
G.f.: -5040*x^7*(x+1)*(x^6+48*x^5+393*x^4+832*x^3+393*x^2+48*x+1) / (x-1)^15. - Colin Barker, Jan 08 2013

A179063 Number of non-attacking placements of 8 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 40320, 3265920, 81648000, 1097712000, 9879408000, 66784798080, 363606122880, 1669619952000, 6678479808000, 23828156352000, 77203226580480, 230333593351680, 639815537088000, 1669577821632000, 4122835028928000
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=8 of A144084.
Cf. A179062 (7 rooks), A179064 (9 rooks).

Programs

Formula

a(n) = 8!*binomial(n,8)^2.
G.f.: -40320*x^8*(x^8 +64*x^7 +784*x^6 +3136*x^5 +4900*x^4 +3136*x^3 +784*x^2 +64*x +1) / (x -1)^17. - Colin Barker, Jan 08 2013

A179064 Number of non-attacking placements of 9 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 362880, 36288000, 1097712000, 17563392000, 185513328000, 1454424491520, 9090153072000, 47491411968000, 214453407168000, 857813628672000, 3096707199505920, 10237048593408000, 31350961317312000
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 28 2010

Keywords

Crossrefs

Column k=9 of A144084.
Cf. A179063 (8 rooks), A179065 (10 rooks).

Programs

Formula

a(n) = 9!*binomial(n,9)^2.
G.f.: -362880*x^9*(x +1)*(x^8 +80*x^7 +1216*x^6 +5840*x^5 +10036*x^4 +5840*x^3 +1216*x^2 +80*x +1) / (x -1)^19. - Colin Barker, Jan 08 2013

A179065 Number of non-attacking placements of 10 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 439084800, 15807052800, 296821324800, 3636061228800, 32724551059200, 232707918643200, 1372501805875200, 6948290392243200, 30967071995059200, 123868287980236800
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 28 2010

Keywords

Crossrefs

Column k=10 of A144084.
Cf. A179064 (9 rooks).

Programs

Formula

a(n) = 10! * binomial(n, 10)^2.

A361893 Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 12, 6, 0, 4, 36, 72, 24, 0, 5, 80, 360, 480, 120, 0, 6, 150, 1200, 3600, 3600, 720, 0, 7, 252, 3150, 16800, 37800, 30240, 5040, 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320, 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880
Offset: 0

Views

Author

Peter Luschny, Mar 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 2,   2;
  [3] 0, 3,  12,     6;
  [4] 0, 4,  36,    72,     24;
  [5] 0, 5,  80,   360,    480,     120;
  [6] 0, 6, 150,  1200,   3600,    3600,     720;
  [7] 0, 7, 252,  3150,  16800,   37800,   30240,    5040;
  [8] 0, 8, 392,  7056,  58800,  235200,  423360,  282240,   40320;
  [9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
		

Crossrefs

Cf. A052852 (row sums), A317365 (alternating row sums), A000142 (main diagonal), A187535 (central column), A062119, A055303, A011379.

Programs

  • Maple
    A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!:
    seq(seq(A361893(n,k), k = 0..n), n = 0..9);
    # Using the egf.:
    egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10):
    poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom):
    row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);

Formula

T(n, k) = k! * binomial(n, k) * binomial(n - 1, k - 1).
T(n + 1, k + 1) / (n + 1) = A144084(n, k) = (-1)^(n - k)*A021010(n, k).
T(n, k) = [x^k] n! * ([y^n](1 + (x*y / (1 - x*y)) * exp(y / (1 - x*y)))).

A307304 Number of inequivalent ways of placing 2 nonattacking rooks on n X n board up to rotations and reflections of the board.

Original entry on oeis.org

0, 1, 4, 13, 31, 66, 123, 214, 346, 535, 790, 1131, 1569, 2128, 2821, 3676, 4708, 5949, 7416, 9145, 11155, 13486, 16159, 19218, 22686, 26611, 31018, 35959, 41461, 47580, 54345, 61816, 70024, 79033, 88876, 99621, 111303, 123994, 137731, 152590, 168610, 185871
Offset: 1

Views

Author

Mo Li, Apr 19 2019

Keywords

Examples

			For n = 4 the a(4) = 13 solutions are
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,1,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,1}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{1,0,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,1,0}}
—————————————————————————————————————
{{0,0,0,0}}
{{0,1,0,0}}
{{0,0,1,0}}
{{0,0,0,0}}
		

Crossrefs

Programs

  • Mathematica
    Table[
    Piecewise[{{(n (n^3 - 2 n^2 + 6 n - 4))/16, Mod[n, 2] == 0},
    {((n - 1) (n^3 - n^2 + 5 n - 1))/16, Mod[n, 2] == 1}}],{n, 20}]

Formula

a(n) = (1/16)*n*(n^3-2n^2+6n-4) if n is even;
a(n) = (1/16)*(n-1)*(n^3-n^2+5n-1) if n is odd.
G.f.: -x^2*(x^2+1)*(x^2+x+1)/((x+1)^2*(x-1)^5). - Alois P. Heinz, Apr 26 2019

A373766 Triangle read by rows, T(n,k) with n,k > 1, is the number of subsequences of length k over all permutations of [n], which are neither increasing or decreasing.

Original entry on oeis.org

0, 0, 4, 0, 64, 22, 0, 800, 550, 118, 0, 9600, 9900, 4248, 718, 0, 117600, 161700, 104076, 35182, 5038, 0, 1505280, 2587200, 2220288, 1125824, 322432, 40318, 0, 20321280, 41912640, 44960832, 30397248, 13058496, 3265758, 362878, 0, 290304000, 698544000, 899216640, 759931200, 435283200
Offset: 2

Views

Author

Thomas Scheuerle, Jun 18 2024

Keywords

Comments

Column T(n, 1) was omitted in the presentation of this sequence. Its definition may depend on the usage. In the combinatorics of subsequences it may be convenient to define T(n, 1) = 0, but if this sequence will be interpreted differently for example as polynomial coefficients then T(n, 1) = -n*n! could be a mathematically more natural definition.

Examples

			The triangle begins:
 n| k: 2|      3|      4|      5|     6|    7|
==============================================
[2]    0,
[3]    0,      4
[4]    0,     64,     22
[5]    0,    800,    550,    118
[6]    0,   9600,   9900,   4248,   718
[7]    0, 117600, 161700, 104076, 35182, 5038
.
T(3, 3) = 4 because:
  {1, 2, 3} has no subsequences which are neither increasing or decreasing.
  {1, 3, 2} has {1, 3, 2}
  {2, 1, 3} has {2, 1, 3}
  {2, 3, 1} has {2, 3, 1}
  {3, 1, 2} has {3, 1, 2}
  {3, 2, 1} has no subsequences which are neither increasing or decreasing.
		

Crossrefs

Cf. A144084.

Programs

  • PARI
    T(n, k) = n!*binomial(n, k)-2*((n-k)! * binomial(n, n-k)^2)
    
  • PARI
    row(n) = if(n==2, [0], abs(Vecrev(-n!*((-1)^n*2*pollaguerre(n)-(-1+x)^n))[3..n+1]))

Formula

T(n, k) = n!*binomial(n, k)-2*((n - k)! * binomial(n, n - k)^2).
An alternative definition of T(n, k) which includes k < 2 can be done by Laguerre polynomials:
Sum_{k=0..n} T(n, k)*x^k = n!*((1 + x)^n - 2*L_{n}(-x)), where L_{n} is the n-th Laguerre polynomial.
Previous Showing 11-20 of 20 results.