cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself.

Examples

			Array begins:
       k=0:   k=1:   k=2:   k=3:   k=4:   k=5:
  n=0:  1      1      1      1      1      1
  n=1:  1      1      1      1      1      1
  n=2:  1      2      3      4      5      6
  n=3:  1      3      6     10     15     21
  n=4:  1      5     15     34     65    111
  n=5:  1      7     28     80    185    371
  n=6:  1     11     66    254    739   1785
  n=7:  1     15    122    604   2163   6223
  n=8:  1     22    266   1785   8120  28413
  n=9:  1     30    503   4370  24446 101534
The A(4,2) = 15 twice-partitions:
  (4)  (31)    (22)    (211)      (1111)
       (3)(1)  (2)(2)  (11)(2)    (11)(11)
                       (2)(11)    (111)(1)
                       (21)(1)    (11)(1)(1)
                       (2)(1)(1)  (1)(1)(1)(1)
		

Crossrefs

Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3).
Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4).
Main diagonal gives A306187.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];
    Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,
         b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    A[n_, k_] := b[n, n, k];
    Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)

Formula

Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - Alois P. Heinz, Sep 20 2019

A139383 Number of n-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 2, 12, 154, 3455, 120196, 5995892, 406005804, 35839643175, 3998289746065, 550054365477936, 91478394767427823, 18091315306315315610, 4196205472500769304318, 1128136777063831105273242, 347994813261017613045578964, 122080313159891715442898099217
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2008

Keywords

Comments

Define the matrix function matexps(M) to be exp(M)/exp(1). Then the number of k-level labeled rooted trees with n leaves is also column 0 of the triangle resulting from the n-th iteration of matexps on the Pascal matrix P, A007318. The resulting triangle is also S^n*P*S^-n, where S is the Stirling2 matrix A048993. This function can be coded in PARI as sum(k=0,200,1./k!*M^k)/exp(1), using exp(M) does not work. See A056857, which equals (1/e)*exp(P) or S*P*S^-1. - Gerald McGarvey, Aug 19 2009

Examples

			If we form a table from the family of sequences defined by:
number of k-level labeled rooted trees with n leaves,
then this sequence equals the diagonal in that table:
n=1:A000012=[1,1,1,1,1,1,1,1,1,1,...];
n=2:A000110=[1,2,5,15,52,203,877,4140,21147,115975,...];
n=3:A000258=[1,3,12,60,358,2471,19302,167894,1606137,...];
n=4:A000307=[1,4,22,154,1304,12915,146115,1855570,26097835,...];
n=5:A000357=[1,5,35,315,3455,44590,660665,11035095,204904830,...];
n=6:A000405=[1,6,51,561,7556,120196,2201856,45592666,1051951026,...];
n=7:A001669=[1,7,70,910,14532,274778,5995892,148154860,4085619622,...];
n=8:A081624=[1,8,92,1380,25488,558426,14140722,406005804,13024655442,...];
n=9:A081629=[1,9,117,1989,41709,1038975,29947185,979687005,35839643175,..].
Row n in the above table equals column 0 of matrix power A008277^n where A008277 = triangle of Stirling numbers of 2nd kind:
1;
1,1;
1,3,1;
1,7,6,1;
1,15,25,10,1;
1,31,90,65,15,1; ...
The name of this sequence is a generalization of the definition given in the above sequences by _Christian G. Bower_.
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n, n-1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2015
    # second Maple program:
    g:= x-> exp(x)-1:
    a:= n-> n! * coeff(series(1+(g@@n)(x), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 31 2017
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, `if`(n<2, 1, 0),
         `if`(n=0, b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    t[n_,m_]:=t[n,m] = If[m==1,1,Sum[StirlingS2[n,k]*t[k,m-1],{k,1,n}]]; Table[t[n,n],{n,1,20}] (* Vaclav Kotesovec, Aug 14 2015 after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if m=1 then 1 else sum(stirling2(n,i)*T(i,m-1),i,1,n);
    makelist(T(n,n),n,1,7); /* Vladimir Kruchinin, May 19 2012 */
    
  • PARI
    {a(n)=local(E=exp(x+x*O(x^n))-1,F=x); for(i=1,n,F=subst(F,x,E));n!*polcoeff(F,n)}
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum(binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1))
    def a(n): return A(n, n - 1)
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 07 2017, after Maple code

Formula

a(n) = T(n,n), T(n,m) = Sum_{i=1..n} Stirling2(n,i)*T(i,m-1), m>1, T(n,1)=1. - Vladimir Kruchinin, May 19 2012
a(n) = n! * [x^n] 1 + g^n(x), where g(x) = exp(x)-1. - Alois P. Heinz, Aug 14 2015
From Vaclav Kotesovec, Aug 14 2015: (Start)
Conjecture: a(n) ~ c * n^(2*n-5/6) / (2^(n-1) * exp(n)), where c = 2.86539...
a(n) ~ exp(-1) * A261280(n).
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 31 2017

A261280 Number of ways to start with set {1,2,...,n} and then repeat n times: partition each set into subsets.

Original entry on oeis.org

1, 1, 3, 22, 315, 7556, 274778, 14140722, 979687005, 87998832685, 9951699489061, 1384060090903535, 232230523534594676, 46265730933522733556, 10797461309089628151462, 2918087323005280354349508, 904185772556792011572372117, 318432010852077710049833537040
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2015

Keywords

Examples

			a(2) = 3: 12->12->12, 12->12->1|2, 12->1|2->1|2.
a(3) = 22: 123->123->123->123, 123->123->123->12|3, 123->123->123->1|23, 123->123->123->13|2, 123->123->123->1|2|3, 123->123->12|3->12|3, 123->123->12|3->1|2|3, 123->123->1|23->1|23, 123->123->1|23->1|2|3, 123->123->13|2->13|2, 123->123->13|2->1|2|3, 123->123->1|2|3->1|2|3, 123->12|3->12|3->12|3, 123->12|3->12|3->1|2|3, 123->12|3->1|2|3->1|2|3, 123->1|23->1|23->1|23, 123->1|23->1|23->1|2|3, 123->1|23->1|2|3->1|2|3, 123->13|2->13|2->13|2, 123->13|2->13|2->1|2|3, 123->13|2->1|2|3->1|2|3, 123->1|2|3->1|2|3->1|2|3.
		

Crossrefs

Main diagonal of A144150.

Programs

  • Maple
    g:= x-> exp(x)-1:
    egf:= k-> 1+(g@@(k+1))(x):
    a:= n-> n! * coeff(series(egf(n), x, n+1), x, n):
    seq(a(n), n=0..20);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, 1, `if`(n=0,
          b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Clear[t]; t[n_, k_]:=t[n, k] = If[n==0 || k==0, 1, Sum[Binomial[n-1, j-1]*t[j, k-1]*t[n-j, k], {j, 1, n}]]; Table[t[n, n], {n, 0, 20}] (* Vaclav Kotesovec, Aug 14 2015 after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum(binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1))
    def a(n): return A(n, n)
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 07 2017

Formula

a(n) = n! * [x^n] 1 + g^(k+1)(x), where g(x) = exp(x)-1.
From Vaclav Kotesovec, Aug 14 2015: (Start)
Conjecture: a(n) ~ c * n^(2*n-5/6) / (2^(n-1) * exp(n)), where c = 7.7889...
a(n) ~ exp(1) * A139383(n).
(End)

A081629 Number of 9-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 9, 117, 1989, 41709, 1038975, 29947185, 979687005, 35839643175, 1449091813035, 64144495494825, 3084209792570721, 160023238477245789, 8909102551102555002, 529651263967161225648, 33482356679629151295651
Offset: 0

Views

Author

Benoit Cloitre, Apr 23 2003

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.

Crossrefs

Column k=8 of A144150.

Programs

  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^n); n!*polcoeff(exp(exp(exp(exp(exp(exp(exp(exp(exp(X)-1)-1)-1)-1)-1)-1)-1)-1),n))

Formula

E.g.f.: exp(exp(exp(exp(exp(exp(exp(exp(exp(x)-1)-1)-1)-1)-1)-1)-1)-1).

A081624 Number of 8-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 8, 92, 1380, 25488, 558426, 14140722, 406005804, 13024655442, 461451524934, 17886290630832, 752602671853068, 34152212772528222, 1662095923363838817, 86335146917372644026, 4766427291743224251474, 278658370977555551901990
Offset: 0

Views

Author

Benoit Cloitre, Apr 23 2003

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.

Crossrefs

Column k=7 of A144150.

Programs

  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^n); n!*polcoeff(exp(exp(exp(exp(exp(exp(exp(exp(X)-1)-1)-1)-1)-1)-1)-1),n))

Formula

E.g.f.: exp(exp(exp(exp(exp(exp(exp(exp(x)-1)-1)-1)-1)-1)-1)-1).

A081697 10-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 10, 145, 2755, 64660, 1804705, 58336855, 2141867440, 87998832685, 3998289746065, 198991311832840, 10762795518750121, 628439018694857887, 39390402253060922833, 2637469071097179922603, 187848412983167698626469, 14178423030415044515701642
Offset: 0

Views

Author

Benoit Cloitre, Apr 23 2003

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.

Crossrefs

Column k=9 of A144150.

Programs

  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^n);  n!*
    polcoeff(exp(exp(exp(exp(exp(exp(exp(exp(exp(exp(X)-1)-1)-1)-1)-1)-1)-1)-1)-1),n)).

Formula

E.g.f. exp(exp(exp(exp(exp(exp(exp(exp(exp(exp(x)-1)-1)-1)-1)-1)-1)-1)-1)-1).

A081740 11-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 11, 176, 3696, 95986, 2967041, 106296586, 4328071506, 197304236151, 9951699489061, 550054365477936, 33053174868315877, 2144972900520659506, 149472637758381213628, 11130201727845695463914, 881841184375010602801553, 74061565980075915066583527
Offset: 0

Views

Author

Benoit Cloitre, Apr 23 2003

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.

Crossrefs

Column k=10 of A144150.

Programs

  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^n); n!*polcoeff (exp( exp( exp( exp( exp( exp(exp(exp(exp(exp(exp(X)-1)-1)-1)-1)-1)-1)-1)-1)-1)-1), n))

Formula

E.g.f.: exp(exp(exp(exp(exp(exp(exp(exp(exp(exp(exp(x)-1)-1)-1)-1)-1) -1) -1) -1) -1) -1).

A153277 Array read by antidiagonals of higher order Bell numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 12, 15, 1, 5, 22, 60, 52, 1, 6, 35, 154, 358, 203, 1, 7, 51, 315, 1304, 2471, 877, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 10, 117, 1380, 14532, 120196, 660665, 1855570, 1606137, 115975
Offset: 1

Views

Author

Jonathan Vos Post, Dec 22 2008

Keywords

Comments

Mezo's abstract: The powers of matrices with Stirling number-coefficients are investigated. It is revealed that the elements of these matrices have a number of properties of the ordinary Stirling numbers. Moreover, "higher order" Bell, Fubini and Eulerian numbers can be defined. Hence we give a new interpretation for E. T. Bell's iterated exponential integers. In addition, it is worth to note that these numbers appear in combinatorial physics, in the problem of the normal ordering of quantum field theoretical operators.

Examples

			The table on p.4 of Mezo begins:
===========================================================
B_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment
===========================================================
p=1..|.1.|.2.|..5.|..15.|...52.|....203.|.....877.|.A000110
p=2..|.1.|.3.|.12.|..60.|..358.|...2471.|...19302.|.A000258
p=3..|.1.|.4.|.22.|.154.|.1304.|..12915.|..146115.|.A000307
p=4..|.1.|.5.|.35.|.315.|.3455.|..44590.|..660665.|.A000357
p=5..|.1.|.6.|.51.|.561.|.7556.|.120196.|.2201856.|.A000405
===========================================================
		

Crossrefs

From Alois P. Heinz, Feb 02 2009: (Start)
Truncated and reflected version of A144150.

Programs

  • Maple
    g:= proc(a) local b; b:=proc(n) option remember; if n=0 then 1 else (n-1)! *add (a(k)* b(n-k)/ (k-1)!/ (n-k)!, k=1..n) fi end end: B:= (p,n)-> (g@@p)(1)(n):
    seq(seq(B(d-n, n), n=1..d-1), d=1..12); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    g[k_] := g[k] = Nest[Function[x, E^x-1], x, k]; a[n_, k_] := SeriesCoefficient[ 1+g[k+1], {x, 0, n}]*n!; Table[a[n, k-n+1], {k, 1, 12}, {n, 1, k}] // Flatten (* Jean-François Alcover, Jan 28 2015 *)

Extensions

More terms from Alois P. Heinz, Feb 02 2009

A323719 Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

An orderless factorization of n with k > 1 levels of parentheses is any multiset partition of an orderless factorization of n with k - 1 levels of parentheses. If k = 1 it is just an orderless factorization of n into factors > 1.

Examples

			Array begins:
       k=0  k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9  k=10 k=11 k=12
   n=1: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=2: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=3: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=4: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=5: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=6: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=7: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=8: 1    3    6   10   15   21   28   36   45   55   66   78   91
   n=9: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=10: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=11: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=12: 1    4    9   16   25   36   49   64   81  100  121  144  169
  n=13: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=14: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=15: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=16: 1    5   14   30   55   91  140  204  285  385  506  650  819
  n=17: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=18: 1    4    9   16   25   36   49   64   81  100  121  144  169
The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses:
  ((2*2*3))          ((2*6))      ((3*4))      ((12))
  ((2)*(2*3))        ((2)*(6))    ((3)*(4))
  ((3)*(2*2))        ((2))*((6))  ((3))*((4))
  ((2))*((2*3))
  ((2)*(2)*(3))
  ((3))*((2*2))
  ((2))*((2)*(3))
  ((3))*((2)*(2))
  ((2))*((2))*((3))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]];
    Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]

A346802 Number of ways to start with set {1,2,...,n} and then repeat (n+1) times: partition each set into subsets.

Original entry on oeis.org

1, 1, 4, 35, 561, 14532, 558426, 29947185, 2141867440, 197304236151, 22773405820375, 3221070321954212, 548135428211610344, 110514990079832223628, 26057791266228066121614, 7105134240266115177248187, 2218719629100693497237788887, 786736247267010426995743418575
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2021

Keywords

Comments

Also the number of (n+2)-level labeled rooted trees with n leaves.

Crossrefs

First upper diagonal of A144150.

Programs

  • Maple
    a:= n-> (g-> coeff(series(1+(g@@(n+2))(x), x, n+1), x, n)*n!)(x-> exp(x)-1):
    seq(a(n), n=0..20);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n, n+1):
    seq(a(n), n=0..20);
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=0, 1,
          b(m, t-1, 0)), m*b(n-1, t, m)+b(n-1, t, m+1))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, t_, m_] := b[n, t, m] = If[n == 0, If[t == 0, 1, b[m, t - 1, 0]], m*b[n - 1, t, m] + b[n - 1, t, m + 1]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 18 2023, after 3rd Maple program *)

Formula

a(n) = n! * [x^n] 1 + g^(n+2)(x), where g(x) = exp(x)-1.
a(n) = A144150(n,n+1).
Conjecture: a(n) ~ c * n^(2*n - 5/6) / (exp(n) * 2^n), where c = 42.345... - Vaclav Kotesovec, Aug 11 2021
Previous Showing 11-20 of 25 results. Next