cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A194880 The numerators of the inverse Akiyama-Tanigawa algorithm from A001045(n).

Original entry on oeis.org

0, -1, -1, -4, -5, -2, -7, -8, -3, -10, -11, -4, -13, -14, -5, -16, -17, -6, -19, -20, -7, -22, -23, -8, -25, -26, -9, -28, -29, -10, -31, -32, -11, -34, -35, -12, -37, -38, -13, -40, -41, -14, -43, -44, -15, -46, -47, -16, -49, -50, -17, -52, -53, -18, -55, -56, -19, -58, -59, -20
Offset: 0

Views

Author

Paul Curtz, Sep 07 2011

Keywords

Comments

0, -1, -1, -4/3, -5/3, -2, -7/3, -8/3, -3, -10/3, -11/3, -4, -13/4, -14/3, -5, = a(n)/b(n),
1, 0, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
1, -2, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
3, -2, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
5, -6, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
11, -10, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
21, -22, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
Vertical: A001045(n), -A078008(n), (-1)^(n+1)*A000012(n), (-1)^(n+1)*A010709(n)/A010701(n), (-1)^(n+1)*A010716(n+1)/A010701(n), A007395(n), .. .
a(n)=0, 1 before (-A145064(n+1)=-A051176(n+3).
b(n)=1, 1 before A169609(n). b(n)=1, 1, 1 before A144437(n+1).
a(n+5)-a(n+2)=b(n+5) (=-1,-3,-3,=-A169609(n)).

Programs

  • Mathematica
    a[0]=0; a[1]=-1; a[n_] := (-n-1)/Max[1, 2*Mod[n, 3]-1]; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Sep 18 2012 *)

Formula

a(3*n)=-3*n-1 except a(0)=0; a(3*n+1)=-3*n-2 except a(1)=-1; a(3*n+2)=-n-1.
From Chai Wah Wu, May 07 2024: (Start)
a(n) = 2*a(n-3) - a(n-6) for n > 7.
G.f.: x*(x^6 + x^5 - 3*x^3 - 4*x^2 - x - 1)/(x^6 - 2*x^3 + 1). (End)

A256095 Triangle of greatest common divisors of two triangular numbers (A000217).

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 6, 1, 3, 6, 10, 1, 1, 2, 10, 15, 1, 3, 3, 5, 15, 21, 1, 3, 3, 1, 3, 21, 28, 1, 1, 2, 2, 1, 7, 28, 36, 1, 3, 6, 2, 3, 3, 4, 36, 45, 1, 3, 3, 5, 15, 3, 1, 9, 45, 55, 1, 1, 1, 5, 5, 1, 1, 1, 5, 55, 66, 1, 3, 6, 2, 3, 3, 2, 6, 3, 11, 66, 78, 1, 3, 6, 2, 3, 3, 2, 6, 3, 1, 6, 78, 91, 1, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 13, 91, 105, 1, 3, 3, 5, 15, 21, 7, 3, 15, 5, 3, 3, 7, 105
Offset: 0

Views

Author

Wolfdieter Lang, Mar 17 2015

Keywords

Examples

			The triangle T(n, m) begins:
n\m   0 1 2 3  4  5  6  7  8  9 10 11 12 13  14
0:    0
1:    1 1
2:    3 1 3
3:    6 1 3 6
4:   10 1 1 2 10
5:   15 1 3 3  5 15
6:   21 1 3 3  1  3 21
7:   28 1 1 2  2  1  7 28
8:   36 1 3 6  2  3  3  4 36
9:   45 1 3 3  5 15  3  1  9 45
10:  55 1 1 1  5  5  1  1  1  5 55
11:  66 1 3 6  2  3  3  2  6  3 11 66
12:  78 1 3 6  2  3  3  2  6  3  1  6 78
13:  91 1 1 1  1  1  7  7  1  1  1  1 13 91
14: 105 1 3 3  5 15 21  7  3 15  5  3  3  7 105
...
		

Crossrefs

T(2n,n) gives A026741.

Programs

  • Maple
    T:= (i,j) -> igcd(i*(i+1)/2,j*(j+1)/2):
    seq(seq(T(i,j),j=0..i),i=0..20); # Robert Israel, Jan 20 2020
  • PARI
    tabl(nn) = {for (n=0, nn, trn = n*(n+1)/2; for (k=0, n, print1(gcd(trn, k*(k+1)/2), ", ");); print(););} \\ Michel Marcus, Mar 17 2015

Formula

T(n, m) = gcd(Tri(n), Tri(m)), 0 <= m <= n, with the triangular numbers Tri = A000217.
T(n, 0) = Tri(n) = T(n, n). T(n, 1) = 1, n >= 0.
Columns m=2: A144437(n-1), m=3: repeat(6, 2, 3, 3, 2, 6, 3, 1, 6, 6, 1, 3) (guess), m=4: repeat(10, 5, 1, 2, 2, 5, 5, 2, 2, 1, 5, 10, 2, 1, 1, 10, 10, 1, 1, 2) (guess), m=5 repeat(15, 3, 1, 3, 15, 5, 3, 3, 1, 15, 15, 1, 3, 3, 5) (guess), ...
From Robert Israel, Jan 21 2020: (Start) The guesses are correct. More generally, for each k>=1, T(n,k) is periodic in n with period 2*A000217(k) if k == 0 or 3 (mod 4), A000217(k) if k == 1 or 2 (mod 4). (End)

A168673 Binomial transform of A169609.

Original entry on oeis.org

1, 4, 10, 20, 38, 74, 148, 298, 598, 1196, 2390, 4778, 9556, 19114, 38230, 76460, 152918, 305834, 611668, 1223338, 2446678, 4893356, 9786710, 19573418, 39146836, 78293674, 156587350, 313174700, 626349398, 1252698794, 2505397588, 5010795178, 10021590358
Offset: 0

Views

Author

Paul Curtz, Dec 02 2009

Keywords

Comments

Sequence and successive differences are identical to their third differences. See principal sequence A024495. Main diagonal of the array of successive differences is A083595 (1,6,8,20,36,...).

Crossrefs

Programs

  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 3*Self(n-1)- 3*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 30 2016
    
  • Mathematica
    LinearRecurrence[{3,-3,2},{1,4,10},25] (* G. C. Greubel, Jul 29 2016 *)
    RecurrenceTable[{a[0] == 1, a[1] == 4, a[2] == 10, a[n] == 3 a[n-1] - 3 a[n-2] + 2 a[n-3]}, a, {n, 40}] (* Vincenzo Librandi, Jul 30 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 2,-3,3]^n*[1;4;10])[1,1] \\ Charles R Greathouse IV, Jul 30 2016

Formula

a(n+1) - 2a(n) = A130772(n).
a(n) = A062092(n) - A130151(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) for n > 2; a(0) = 1, a(1) = 4, a(2) = 10.
G.f.: (1 + x + x^2)/(1 -3*x +3*x^2 -2*x^3). - Philippe Deléham, Dec 03 2009

Extensions

Edited and extended by Klaus Brockhaus, Dec 03 2009

A171372 a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.

Original entry on oeis.org

1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5
Offset: 0

Views

Author

Paul Curtz, Dec 07 2009

Keywords

Comments

The diagonal of a table of numerators of the Rydberg-Ritz spectrum of hydrogen:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, ... A061037
0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, ... A061041
0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, ... A061045
0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, ... A061049
0, 21, 11, 69, 6, 1, 39, 189, 14, 261, 3, ...
0, 25, 13, 1, 7, 145, 5, 217, 1, 11, 85, ...
0, 29, 15, 93, 8, 165, 51, 5, 18, 333, 95, ...
0, 33, 17, 105, 9, 185, 57, 273, 5, 369, 105, ...
0, 37, 19, 13, 10, 205, 7, 301, 22, 5, 115, ...
0, 41, 21, 129, 11, 9, 69, 329, 3, 441, 1, ...
In that respect, constructed similar to A144437.

Crossrefs

Cf. A171373 (binomial transform), A171408, A105371.

Programs

  • Magma
    [1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = numerator of 5/(6*n)^2 .
Period 5: repeat [1,5,5,5,5].
G.f.: (1 + 5*x + 5*x^2 + 5*x^3 + 5*x^4)/((1-x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 1 + 4*sign(n mod 5). - Wesley Ivan Hurt, Sep 26 2018
a(n) = (21-8*cos(2*n*Pi/5)-8*cos(4*n*Pi/5))/5. - Wesley Ivan Hurt, Sep 27 2018

Extensions

Edited by R. J. Mathar, Dec 15 2009
Previous Showing 11-14 of 14 results.